Modifications to the Histomorphological Phenotype Learning pipeline.
Original HPL paper by Quiros et al. is here: https://www.nature.com/articles/s41467-024-48666-7.
Yumi Briones - yb2612@nyu.edu, Yumi.Briones@nyulangone.org
Jennifer Motter - mottej02@nyu.edu, Jennifer.Motter@nyulangone.org
Alyssa Pradhan - amp10295@nyu.edu, Alyssa.Pradhan@nyulangone.org
docs
- documentationscripts
- scripts for automation (e.g., bash scripts)src
- source codenotebooks
- Jupyter notebooks
All data is from https://github.com/AdalbertoCq/Histomorphological-Phenotype-Learning.
- For initial training, we used a 250k subsample of LUAD and LUSC samples: LUAD & LUSC 250K subsample
- For complete train, validation, and test sets, we used: LUAD & LUSC datasets
- To get original HPL tile embeddings, we used: LUAD & LUSC tile vector representations
- To get the original HPL-HPC assignments, we used: LUAD vs LUSC type classification and HPC assignments
Point person: Yumi Briones
https://arxiv.org/pdf/2103.00020
Tutorial: https://github.com/yumibriones/HPL-Modified/blob/main/docs/HPL-CLIP_tutorial.md
To enable multimodal learning, we integrated Contrastive Language-Image Pre-Training (CLIP) by OpenAI (open_clip implementation) into the HPL pipeline.
Briefly, we first generated text captions for each image incorporating information on age, gender, and smoking status. We then trained a CLIP model on these image-text pairs using the ViT-B-32 architecture. Finally, we generated HPCs from the image embeddings generated by CLIP following the HPL pipeline (i.e., Leiden clustering).
Point person: Jennifer Motter
https://arxiv.org/pdf/2105.04906
We changed the self-supervised learning (SSL) method of HPL from Barlow Twins to Variance-Invariance-Covariance Regularization (VICReg).
Point person: Alyssa Pradhan
https://arxiv.org/pdf/2010.11929
We replaced the convolutional neural network (CNN) backbone of HPL to a vision transformer (ViT).