Skip to content

[doc] add streamlit integration #17522

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 6 commits into from
May 1, 2025
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
1 change: 1 addition & 0 deletions docs/source/deployment/frameworks/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -12,5 +12,6 @@ lws
modal
open-webui
skypilot
streamlit
triton
:::
174 changes: 174 additions & 0 deletions docs/source/deployment/frameworks/streamlit.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,174 @@
(deployment-streamlit)=

# Streamlit

[Streamlit](https://github.com/streamlit/streamlit) lets you transform Python scripts into interactive web apps in minutes, instead of weeks. Build dashboards, generate reports, or create chat apps.

It can be quickly integrated with vLLM as a backend API server, enabling powerful LLM inference via API calls.

## Prerequisites

- Setup vLLM environment

## Deploy

- Start the vLLM server with the supported chat completion model, e.g.

```console
vllm serve qwen/Qwen1.5-0.5B-Chat
```

- Install streamlit and openai:

```console
pip install streamlit openai
```

- Create python file(streamlit_openai_chatbot_webserver.py) and copy the below code into it:

```python
import streamlit as st
from openai import OpenAI
from datetime import datetime
import os

openai_api_key = os.getenv('VLLM_API_KEY', "EMPTY")
openai_api_base = os.getenv('VLLM_API_BASE', "http://localhost:8000/v1")

if "sessions" not in st.session_state:
st.session_state.sessions = {}

if "current_session" not in st.session_state:
st.session_state.current_session = None

if "messages" not in st.session_state:
st.session_state.messages = []

if "active_session" not in st.session_state:
st.session_state.active_session = None

if "api_base_url" not in st.session_state:
st.session_state.api_base_url = openai_api_base

def create_new_chat_session():
"""Create a new chat session with timestamp as ID"""
session_id = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
st.session_state.sessions[session_id] = []
st.session_state.current_session = session_id
st.session_state.active_session = session_id
st.session_state.messages = []

def switch_to_chat_session(session_id):
"""Switch to a different chat session"""
st.session_state.current_session = session_id
st.session_state.active_session = session_id
st.session_state.messages = st.session_state.sessions[session_id]

def get_llm_response(messages, model):
try:
response = client.chat.completions.create(
model=model,
messages=messages,
stream=True
)
return response
except Exception as e:
st.error(f"Error details: {str(e)}")
return f"Error: {str(e)}"

st.sidebar.title("API Settings")
new_api_base = st.sidebar.text_input("API Base URL:", value=st.session_state.api_base_url)
if new_api_base != st.session_state.api_base_url:
st.session_state.api_base_url = new_api_base
st.rerun()

st.sidebar.divider()

st.sidebar.title("Chat Sessions")
if st.sidebar.button("New Session"):
create_new_chat_session()

for session_id in sorted(st.session_state.sessions.keys(), reverse=True):
if session_id == st.session_state.active_session:
st.sidebar.button(
f"📍 {session_id}",
key=session_id,
type="primary",
on_click=switch_to_chat_session,
args=(session_id,)
)
else:
st.sidebar.button(
f"Session {session_id}",
key=session_id,
on_click=switch_to_chat_session,
args=(session_id,)
)

st.title("vLLM Chat Assistant")

client = OpenAI(
api_key=openai_api_key,
base_url=st.session_state.api_base_url
)

models = client.models.list()
model = models.data[0].id
st.markdown(f"**Model**: {model}")

if st.session_state.current_session is None:
create_new_chat_session()
st.session_state.active_session = st.session_state.current_session

for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.write(message["content"])

if prompt := st.chat_input("Type your message here..."):
st.session_state.messages.append({"role": "user", "content": prompt})
st.session_state.sessions[st.session_state.current_session] = st.session_state.messages

with st.chat_message("user"):
st.write(prompt)

messages_for_llm = [
{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages
]

with st.chat_message("assistant"):
message_placeholder = st.empty()
full_response = ""

response = get_llm_response(messages_for_llm, model)
if isinstance(response, str):
message_placeholder.markdown(response)
full_response = response
else:
for chunk in response:
if hasattr(chunk.choices[0].delta, "content"):
content = chunk.choices[0].delta.content
if content:
full_response += content
message_placeholder.markdown(full_response + "▌")

message_placeholder.markdown(full_response)

st.session_state.messages.append({"role": "assistant", "content": full_response})
```
A code example can be found here: <gh-file:examples/online_serving/streamlit_openai_chatbot_webserver.py>

- Start the streamlit web UI and start to chat:

```console
streamlit run streamlit_openai_chatbot_webserver.py

# or specify the VLLM_API_BASE or VLLM_API_KEY
VLLM_API_BASE="http://vllm-server-host:vllm-server-port/v1" streamlit run streamlit_openai_chatbot_webserver.py

# start with debug mode to view more details
streamlit run streamlit_openai_chatbot_webserver.py --logger.level=debug
```

:::{image} /assets/deployment/streamlit-chat.png
:::
184 changes: 184 additions & 0 deletions examples/online_serving/streamlit_openai_chatbot_webserver.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,184 @@
# SPDX-License-Identifier: Apache-2.0
"""
vLLM Chat Assistant - A Streamlit Web Interface

A streamlined chat interface that quickly integrates
with vLLM API server.

Features:
- Multiple chat sessions management
- Streaming response display
- Configurable API endpoint
- Real-time chat history

Requirements:
pip install streamlit openai

Usage:
# Start the app with default settings
streamlit run streamlit_openai_chatbot_webserver.py

# Start with custom vLLM API endpoint
VLLM_API_BASE="http://your-server:8000/v1" \
streamlit run streamlit_openai_chatbot_webserver.py

# Enable debug mode
streamlit run streamlit_openai_chatbot_webserver.py \
--logger.level=debug
"""
import streamlit as st
from openai import OpenAI
from datetime import datetime
import os

# Get command line arguments from environment variables
openai_api_key = os.getenv('VLLM_API_KEY', "EMPTY")
openai_api_base = os.getenv('VLLM_API_BASE', "http://localhost:8000/v1")

# Initialize session states for managing chat sessions
if "sessions" not in st.session_state:
st.session_state.sessions = {}

if "current_session" not in st.session_state:
st.session_state.current_session = None

if "messages" not in st.session_state:
st.session_state.messages = []

if "active_session" not in st.session_state:
st.session_state.active_session = None

# Initialize session state for API base URL
if "api_base_url" not in st.session_state:
st.session_state.api_base_url = openai_api_base

def create_new_chat_session():
"""Create a new chat session with timestamp as ID"""
session_id = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
st.session_state.sessions[session_id] = []
st.session_state.current_session = session_id
st.session_state.active_session = session_id
st.session_state.messages = []

def switch_to_chat_session(session_id):
"""Switch to a different chat session"""
st.session_state.current_session = session_id
st.session_state.active_session = session_id
st.session_state.messages = st.session_state.sessions[session_id]

def get_llm_response(messages, model):
"""Get streaming response from llm

Args:
messages: List of message dictionaries
model: Name of model

Returns:
Streaming response object or error message string
"""
try:
response = client.chat.completions.create(
model=model,
messages=messages,
stream=True
)
return response
except Exception as e:
st.error(f"Error details: {str(e)}")
return f"Error: {str(e)}"

# Sidebar - API Settings first
st.sidebar.title("API Settings")
new_api_base = st.sidebar.text_input("API Base URL:", value=st.session_state.api_base_url)
if new_api_base != st.session_state.api_base_url:
st.session_state.api_base_url = new_api_base
st.rerun()

st.sidebar.divider()

# Sidebar - Session Management
st.sidebar.title("Chat Sessions")
if st.sidebar.button("New Session"):
create_new_chat_session()

# Display all sessions in reverse chronological order
for session_id in sorted(st.session_state.sessions.keys(), reverse=True):
# Mark the active session with a pinned button
if session_id == st.session_state.active_session:
st.sidebar.button(
f"📍 {session_id}",
key=session_id,
type="primary",
on_click=switch_to_chat_session,
args=(session_id,)
)
else:
st.sidebar.button(
f"Session {session_id}",
key=session_id,
on_click=switch_to_chat_session,
args=(session_id,)
)

# Main interface
st.title("vLLM Chat Assistant")

# Initialize OpenAI client with API settings
client = OpenAI(
api_key=openai_api_key,
base_url=st.session_state.api_base_url
)

# Get and display current model id
models = client.models.list()
model = models.data[0].id
st.markdown(f"**Model**: {model}")

# Initialize first session if none exists
if st.session_state.current_session is None:
create_new_chat_session()
st.session_state.active_session = st.session_state.current_session

# Display chat history for current session
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.write(message["content"])

# Handle user input and generate llm response
if prompt := st.chat_input("Type your message here..."):
# Save user message to session
st.session_state.messages.append({"role": "user", "content": prompt})
st.session_state.sessions[st.session_state.current_session] = st.session_state.messages

# Display user message
with st.chat_message("user"):
st.write(prompt)

# Prepare messages for llm
messages_for_llm = [
{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages
]

# Generate and display llm response
with st.chat_message("assistant"):
message_placeholder = st.empty()
full_response = ""

# Get streaming response from llm
response = get_llm_response(messages_for_llm, model)
if isinstance(response, str):
message_placeholder.markdown(response)
full_response = response
else:
for chunk in response:
if hasattr(chunk.choices[0].delta, "content"):
content = chunk.choices[0].delta.content
if content:
full_response += content
message_placeholder.markdown(full_response + "▌")

message_placeholder.markdown(full_response)

# Save llm response to session history
st.session_state.messages.append({"role": "assistant", "content": full_response})
Loading