Skip to content

[Chore] added stubs for vllm_flash_attn during development mode #17228

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Apr 26, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -58,7 +58,8 @@ ignore_patterns = [
line-length = 80
exclude = [
# External file, leaving license intact
"examples/other/fp8/quantizer/quantize.py"
"examples/other/fp8/quantizer/quantize.py",
"vllm/vllm_flash_attn/flash_attn_interface.pyi"
]

[tool.ruff.lint.per-file-ignores]
Expand Down
1 change: 0 additions & 1 deletion setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -378,7 +378,6 @@ def run(self) -> None:
"vllm/vllm_flash_attn/_vllm_fa2_C.abi3.so",
"vllm/vllm_flash_attn/_vllm_fa3_C.abi3.so",
"vllm/vllm_flash_attn/flash_attn_interface.py",
"vllm/vllm_flash_attn/__init__.py",
"vllm/cumem_allocator.abi3.so",
# "vllm/_version.py", # not available in nightly wheels yet
]
Expand Down
22 changes: 22 additions & 0 deletions vllm/vllm_flash_attn/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
# SPDX-License-Identifier: Apache-2.0

import importlib.metadata

try:
__version__ = importlib.metadata.version("vllm-flash-attn")
except importlib.metadata.PackageNotFoundError:
# in this case, vllm-flash-attn is built from installing vllm editable
__version__ = "0.0.0.dev0"

from .flash_attn_interface import (fa_version_unsupported_reason,
flash_attn_varlen_func,
flash_attn_with_kvcache,
get_scheduler_metadata,
is_fa_version_supported, sparse_attn_func,
sparse_attn_varlen_func)

__all__ = [
'flash_attn_varlen_func', 'flash_attn_with_kvcache',
'get_scheduler_metadata', 'sparse_attn_func', 'sparse_attn_varlen_func',
'is_fa_version_supported', 'fa_version_unsupported_reason'
]
245 changes: 245 additions & 0 deletions vllm/vllm_flash_attn/flash_attn_interface.pyi
Original file line number Diff line number Diff line change
@@ -0,0 +1,245 @@
# ruff: ignore
# SPDX-License-Identifier: Apache-2.0

from __future__ import annotations

from typing import Any, Literal, overload

import torch

def get_scheduler_metadata(
batch_size: int,
max_seqlen_q: int,
max_seqlen_k: int,
num_heads_q: int,
num_heads_kv: int,
headdim: int,
cache_seqlens: torch.Tensor,
qkv_dtype: torch.dtype = ...,
headdim_v: int | None = ...,
cu_seqlens_q: torch.Tensor | None = ...,
cu_seqlens_k_new: torch.Tensor | None = ...,
cache_leftpad: torch.Tensor | None = ...,
page_size: int = ...,
max_seqlen_k_new: int = ...,
causal: bool = ...,
window_size: tuple[int, int] = ...,
has_softcap: bool = ...,
num_splits: int = ...,
pack_gqa: Any | None = ...,
sm_margin: int = ...,
): ...
@overload
def flash_attn_varlen_func(
q: tuple[int, int, int],
k: tuple[int, int, int],
v: tuple[int, int, int],
max_seqlen_q: int,
cu_seqlens_q: torch.Tensor | None,
max_seqlen_k: int,
cu_seqlens_k: torch.Tensor | None = ...,
seqused_k: Any | None = ...,
q_v: Any | None = ...,
dropout_p: float = ...,
causal: bool = ...,
window_size: list[int] | None = ...,
softmax_scale: float = ...,
alibi_slopes: tuple[int] | tuple[int, int] | None = ...,
deterministic: bool = ...,
return_attn_probs: bool = ...,
block_table: Any | None = ...,
return_softmax_lse: Literal[False] = ...,
out: Any = ...,
# FA3 Only
scheduler_metadata: Any | None = ...,
q_descale: Any | None = ...,
k_descale: Any | None = ...,
v_descale: Any | None = ...,
# Version selector
fa_version: int = ...,
) -> tuple[int, int, int]: ...
@overload
def flash_attn_varlen_func(
q: tuple[int, int, int],
k: tuple[int, int, int],
v: tuple[int, int, int],
max_seqlen_q: int,
cu_seqlens_q: torch.Tensor | None,
max_seqlen_k: int,
cu_seqlens_k: torch.Tensor | None = ...,
seqused_k: Any | None = ...,
q_v: Any | None = ...,
dropout_p: float = ...,
causal: bool = ...,
window_size: list[int] | None = ...,
softmax_scale: float = ...,
alibi_slopes: tuple[int] | tuple[int, int] | None = ...,
deterministic: bool = ...,
return_attn_probs: bool = ...,
block_table: Any | None = ...,
return_softmax_lse: Literal[True] = ...,
out: Any = ...,
# FA3 Only
scheduler_metadata: Any | None = ...,
q_descale: Any | None = ...,
k_descale: Any | None = ...,
v_descale: Any | None = ...,
# Version selector
fa_version: int = ...,
) -> tuple[tuple[int, int, int], tuple[int, int]]: ...
@overload
def flash_attn_with_kvcache(
q: tuple[int, int, int, int],
k_cache: tuple[int, int, int, int],
v_cache: tuple[int, int, int, int],
k: tuple[int, int, int, int] | None = ...,
v: tuple[int, int, int, int] | None = ...,
rotary_cos: tuple[int, int] | None = ...,
rotary_sin: tuple[int, int] | None = ...,
cache_seqlens: int | torch.Tensor | None = None,
cache_batch_idx: torch.Tensor | None = None,
cache_leftpad: torch.Tensor | None = ...,
block_table: torch.Tensor | None = ...,
softmax_scale: float = ...,
causal: bool = ...,
window_size: tuple[int, int] = ..., # -1 means infinite context window
softcap: float = ...,
rotary_interleaved: bool = ...,
alibi_slopes: tuple[int] | tuple[int, int] | None = ...,
num_splits: int = ...,
return_softmax_lse: Literal[False] = ...,
*,
out: Any = ...,
# FA3 Only
scheduler_metadata: Any | None = ...,
q_descale: Any | None = ...,
k_descale: Any | None = ...,
v_descale: Any | None = ...,
# Version selector
fa_version: int = ...,
) -> tuple[int, int, int, int]: ...
@overload
def flash_attn_with_kvcache(
q: tuple[int, int, int, int],
k_cache: tuple[int, int, int, int],
v_cache: tuple[int, int, int, int],
k: tuple[int, int, int, int] | None = ...,
v: tuple[int, int, int, int] | None = ...,
rotary_cos: tuple[int, int] | None = ...,
rotary_sin: tuple[int, int] | None = ...,
cache_seqlens: int | torch.Tensor | None = None,
cache_batch_idx: torch.Tensor | None = None,
cache_leftpad: torch.Tensor | None = ...,
block_table: torch.Tensor | None = ...,
softmax_scale: float = ...,
causal: bool = ...,
window_size: tuple[int, int] = ..., # -1 means infinite context window
softcap: float = ...,
rotary_interleaved: bool = ...,
alibi_slopes: tuple[int] | tuple[int, int] | None = ...,
num_splits: int = ...,
return_softmax_lse: Literal[True] = ...,
*,
out: Any = ...,
# FA3 Only
scheduler_metadata: Any | None = ...,
q_descale: Any | None = ...,
k_descale: Any | None = ...,
v_descale: Any | None = ...,
# Version selector
fa_version: int = ...,
) -> tuple[tuple[int, int, int], tuple[int, int]]: ...
@overload
def sparse_attn_func(
q: tuple[int, int, int, int],
k: tuple[int, int, int, int],
v: tuple[int, int, int, int],
block_count: tuple[int, int, float],
block_offset: tuple[int, int, float, int],
column_count: tuple[int, int, float],
column_index: tuple[int, int, float, int],
dropout_p: float = ...,
softmax_scale: float = ...,
causal: bool = ...,
softcap: float = ...,
alibi_slopes: tuple[int] | tuple[int, int] | None = ...,
deterministic: bool = ...,
return_attn_probs: bool = ...,
*,
return_softmax_lse: Literal[False] = ...,
out: Any = ...,
) -> tuple[int, int, int]: ...
@overload
def sparse_attn_func(
q: tuple[int, int, int, int],
k: tuple[int, int, int, int],
v: tuple[int, int, int, int],
block_count: tuple[int, int, float],
block_offset: tuple[int, int, float, int],
column_count: tuple[int, int, float],
column_index: tuple[int, int, float, int],
dropout_p: float = ...,
softmax_scale: float = ...,
causal: bool = ...,
softcap: float = ...,
alibi_slopes: tuple[int] | tuple[int, int] | None = ...,
deterministic: bool = ...,
return_attn_probs: bool = ...,
*,
return_softmax_lse: Literal[True] = ...,
out: Any = ...,
) -> tuple[tuple[int, int, int], tuple[int, int]]: ...
@overload
def sparse_attn_varlen_func(
q: tuple[int, int, int],
k: tuple[int, int, int],
v: tuple[int, int, int],
block_count: tuple[int, int, float],
block_offset: tuple[int, int, float, int],
column_count: tuple[int, int, float],
column_index: tuple[int, int, float, int],
cu_seqlens_q: torch.Tensor | None,
cu_seqlens_k: torch.Tensor | None,
max_seqlen_q: int,
max_seqlen_k: int,
dropout_p: float = ...,
softmax_scale: float = ...,
causal: bool = ...,
softcap: float = ...,
alibi_slopes: tuple[int] | tuple[int, int] | None = ...,
deterministic: bool = ...,
return_attn_probs: bool = ...,
*,
return_softmax_lse: Literal[False] = ...,
out: Any = ...,
) -> tuple[int, int, int]: ...
@overload
def sparse_attn_varlen_func(
q: tuple[int, int, int],
k: tuple[int, int, int],
v: tuple[int, int, int],
block_count: tuple[int, int, float],
block_offset: tuple[int, int, float, int],
column_count: tuple[int, int, float],
column_index: tuple[int, int, float, int],
cu_seqlens_q: torch.Tensor | None,
cu_seqlens_k: torch.Tensor | None,
max_seqlen_q: int,
max_seqlen_k: int,
dropout_p: float = ...,
softmax_scale: float = ...,
causal: bool = ...,
softcap: float = ...,
alibi_slopes: tuple[int] | tuple[int, int] | None = ...,
deterministic: bool = ...,
return_attn_probs: bool = ...,
*,
return_softmax_lse: Literal[True] = ...,
out: Any = ...,
) -> tuple[tuple[int, int, int], tuple[int, int]]: ...
def is_fa_version_supported(
fa_version: int, device: torch.device | None = None
) -> bool: ...
def fa_version_unsupported_reason(
fa_version: int, device: torch.device | None = None
) -> str | None: ...