Skip to content

Spring Data Redis extensions for better search, documents models, and more

License

Notifications You must be signed in to change notification settings

redis/redis-om-spring

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation



Redis OM

Object Mapping (and more) for Redis!


Redis OM Spring extends Spring Data Redis to take full advantage of Redis and Redis Stack.

Stage Release Snapshot Coverage Issues Resolution Code QL License
Project stage Releases Snapshots codecov Percentage of issues still open Average time to resolve an issue CodeQL License

Learn / Discuss / Collaborate

Discord Twitch YouTube Twitter
Discord Twitch YouTube Twitter
Table of contents

πŸ’‘ Why Redis OM?

The Redis OM family of client libraries provide high-level abstractions, idiomatically implemented for your language and platform of choice. We currently cater to the Node, Python, .NET, and Spring communities.

πŸ€ Redis OM Spring

Redis OM Spring provides powerful repository and custom object-mapping abstractions built on top of the Spring Data Redis (SDR) framework.

This preview release provides all Spring Data Redis, plus:

  • @Document annotation to map Spring Data models to Redis JSON documents
  • Enhancement to the Spring Data Redis @RedisHash via @EnableRedisEnhancedRepositories:
    • uses Redis' native search engine (RediSearch) for secondary indexing
    • uses ULID for @Id annotated fields
  • RedisDocumentRepository with automatic implementation of Repository interfaces for complex querying capabilities using @EnableRedisDocumentRepositories
  • Declarative search indexes via @Indexed
  • Full-text search indexes via @Searchable
  • EntityStreams: Streams-based Query and Aggregations Builder
  • @Bloom annotation to determine very fast, with and with high degree of certainty, whether a value is in a collection.
  • @Vectorize annotation to generate embeddings for text and images for use in Vector Similarity Searches
  • Vector Similarity Search API (See Redis Stack Vectors)

Note: Redis OM Spring requires Jedis version 5.2.0 or later, as well as Spring Data Redis version 3.4.1 or later, which is built on top of Spring Framework 6.2.+.

🏁 Getting Started

Here is a quick teaser of an application using Redis OM Spring to map a Spring Data model using a RedisJSON document.

πŸš€ Launch Redis

Redis OM Spring relies on the search, query, and JSON capabilities of Redis Stack. Before writing any code, you'll need a Redis Stack. The quickest way to get this is with Docker:

docker run -p 6379:6379 -p 8001:8001 redis/redis-stack

This launches redis-stack, an extension of Redis that adds several modern data structures to Redis. You'll also notice that if you open up http://localhost:8001, you'll have access to the redis-insight GUI, a GUI you can use to visualize and work with your data in Redis. We have also provided a Docker Compose YAML file for you to quickly get started using Redis Stack.

To launch the docker compose application, on the command line (or via Docker Desktop), clone this repository and run (from the root folder):

docker compose up

Configuring your Redis Connection

By default, Redis OM Spring connects to localhost at port 6379. If your instance is running somewhere else, you can configure the connection in your application.properties or application.yaml:

In application.properties:

spring.data.redis.host=your.cloud.db.redislabs.com
spring.data.redis.port=12345
spring.data.redis.password=xxxxxxxx
spring.data.redis.username=default

In application.yaml:

spring:
  data:
    redis:
      host: your.cloud.db.redislabs.com
      port: 12345
      password: xxxxxxxx
      username: default

The SpringBoot App

Use the @EnableRedisDocumentRepositories annotation to scan for @Document annotated Spring models, Inject repositories beans implementing RedisDocumentRepository which you can use for CRUD operations and custom queries (all by declaring Spring Data Query Interfaces):

package com.redis.om.documents;

import java.util.Set;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.CommandLineRunner;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.geo.Point;

import com.redis.om.documents.domain.Company;
import com.redis.om.documents.repositories.CompanyRepository;

@SpringBootApplication
@Configuration
@EnableRedisDocumentRepositories(basePackages = "com.redis.om.documents.*")
public class RomsDocumentsApplication {

  @Autowired
  CompanyRepository companyRepo;

  @Bean
  CommandLineRunner loadTestData() {
    return args -> {
      // remove all companies
      companyRepo.deleteAll();

      // Create a couple of `Company` domain entities
      Company redis = Company.of(
        "Redis", "https://redis.com", new Point(-122.066540, 37.377690), 526, 2011 //
      );
      redis.setTags(Set.of("fast", "scalable", "reliable"));

      Company microsoft = Company.of(
        "Microsoft", "https://microsoft.com", new Point(-122.124500, 47.640160), 182268, 1975 //
      );
      microsoft.setTags(Set.of("innovative", "reliable"));

      // save companies to the database
      companyRepo.save(redis);
      companyRepo.save(microsoft);
    };
  }

  public static void main(String[] args) {
    SpringApplication.run(RomsDocumentsApplication.class, args);
  }
}

πŸ’β€β™‚οΈ The Mapped Model

Like many other Spring Data projects, an annotation at the class level determines how instances of the class are persisted. Redis OM Spring provides the @Document annotation to persist models as JSON documents using RedisJSON:

package com.redis.om.documents.domain;

import java.util.HashSet;
import java.util.Set;

import org.springframework.data.annotation.Id;
import org.springframework.data.geo.Point;
import com.redis.om.spring.annotations.Document;
import com.redis.om.spring.annotations.Searchable;
import lombok.*;

@Data
@NoArgsConstructor
@RequiredArgsConstructor(staticName = "of")
@AllArgsConstructor(access = AccessLevel.PROTECTED)
@Document
public class Company {
  @Id private String id;
  @Searchable private String name;
  @Indexed private Point location;
  @Indexed private Set<String> tags = new HashSet<>();
  @Indexed private Integer numberOfEmployees;
  @Indexed private Integer yearFounded;
  private String url;
  private boolean publiclyListed;

  // ...
}

Redis OM Spring, replaces the conventional UUID primary key strategy generation with a ULID (Universally Unique Lexicographically Sortable Identifier) which is faster to generate and easier on the eyes.

🧰 The Repository

Redis OM Spring data repository's goal, like other Spring Data repositories, is to significantly reduce the amount of boilerplate code required to implement data access. Simply create a Java interface that extends RedisDocumentRepository that takes the domain class to manage as well as the ID type of the domain class as type arguments. RedisDocumentRepository extends the Spring Data class PagingAndSortingRepository.

Declare query methods on the interface. You can both, expose CRUD methods or create declarations for complex queries that Redis OM Spring will fulfill at runtime:

package com.redis.om.documents.repositories;

import java.util.*;

import org.springframework.data.geo.Distance;
import org.springframework.data.geo.Point;
import org.springframework.data.repository.query.Param;

import com.redis.om.documents.domain.Company;
import com.redis.om.spring.annotations.Query;
import com.redis.om.spring.repository.RedisDocumentRepository;

public interface CompanyRepository extends RedisDocumentRepository<Company, String> {
  // find one by property
  Optional<Company> findOneByName(String name);

  // geospatial query
  Iterable<Company> findByLocationNear(Point point, Distance distance);

  // find by tag field, using JRediSearch "native" annotation
  @Query("@tags:{$tags}")
  Iterable<Company> findByTags(@Param("tags") Set<String> tags);

  // find by numeric property
  Iterable<Company> findByNumberOfEmployees(int noe);

  // find by numeric property range
  Iterable<Company> findByNumberOfEmployeesBetween(int noeGT, int noeLT);

  // starting with/ending with
  Iterable<Company> findByNameStartingWith(String prefix);
}

The repository proxy has two ways to derive a store-specific query from the method name:

  • By deriving the query from the method name directly.
  • By using a manually defined query using the @Query or @Aggregation annotations.

🚀 Querying with Entity Streams

Redis OM Spring Entity Streams provides a Java 8 Streams interface to Query Redis JSON documents using RediSearch. Entity Streams allow you to process data in a type safe declarative way similar to SQL statements. Streams can be used to express a query as a chain of operations.

Entity Streams in Redis OM Spring provides the same semantics as Java 8 streams. Streams can be made of Redis Mapped entities (@Document) or one or more properties of an Entity. Entity Streams progressively build the query until a terminal operation is invoked (such as collect). Whenever a Terminal operation is applied to a Stream, the Stream cannot accept additional operations to its pipeline and it also means that the Stream is started.

Let's start with a simple example, a Spring @Service which includes EntityStream to query for instances of the mapped class Person:

package com.redis.om.skeleton.services;

import java.util.stream.Collectors;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;

import com.redis.om.skeleton.models.Person;
import com.redis.om.skeleton.models.Person$;
import com.redis.om.spring.search.stream.EntityStream;

@Service
public class PeopleService {
  @Autowired
  EntityStream entityStream;

  // Find all people
  public Iterable<Person> findAllPeople() {
    return entityStream //
        .of(Person.class) //
        .collect(Collectors.toList());
  }

}

The EntityStream is injected into the PeopleService using @Autowired. We can then get a stream for Person objects by using entityStream.of(Person.class). At this point the stream represents the equivalent of a SELECT * FROM Person on a relational database. The call to collect will then execute the underlying query and return a collection of all Person objects in Redis.

πŸ‘­ Entity Meta-model

To produce more elaborate queries, you're provided with a generated metamodel, which is a class with the same name as your model but ending with a dollar sign. In the example below, our entity model is Person therefore we get a metamodel named Person$. With the metamodel you have access to the operations related to the underlying search engine field. For example, in the example we have an age property which is an integer. Therefore, our metamodel has an AGE property which has numeric operations we can use with the stream's filter method such as between.

// Find people by age range
public Iterable<Person> findByAgeBetween(int minAge, int maxAge) {
  return entityStream //
      .of(Person.class) //
      .filter(Person$.AGE.between(minAge, maxAge)) //
      .sorted(Person$.AGE, SortOrder.ASC) //
      .collect(Collectors.toList());
}

In this example we also make use of the Streams sorted method to declare that our stream will be sorted by the Person$.AGE in ASCending order.

Check out the full set of tests for EntityStreams

πŸ‘―β€οΈ Querying by Example (QBE)

Query by Example (QBE) is a user-friendly querying technique with a simple interface. It allows dynamic query creation and does not require you to write queries that contain field names. In fact, Query by Example does not require you to write queries by using store-specific query languages at all.

QBE Usage

The Query by Example API consists of four parts:

  • Probe: The actual example of a domain object with populated fields.
  • ExampleMatcher: The ExampleMatcher carries details on how to match particular fields. It can be reused across multiple Examples.
  • Example: An Example consists of the probe and the ExampleMatcher. It is used to create the query.
  • FetchableFluentQuery: A FetchableFluentQuery offers a fluent API, that allows further customization of a query derived from an Example. Using the fluent API lets you specify ordering projection and result processing for your query.

Query by Example is well suited for several use cases:

  • Querying your data store with a set of static or dynamic constraints.
  • Frequent refactoring of the domain objects without worrying about breaking existing queries.
  • Working independently of the underlying data store API.

For example, if you have an @Document or @RedisHash annotated entity you can create an instance, partially populate its properties, create an Example from it, and used the findAll method to query for similar entities:

MyDoc template = new MyDoc();
template.setTitle("hello world");
template.setTag(Set.of("artigo"));

Example<MyDoc> example = Example.of(template, ExampleMatcher.matchingAny());

Iterable<MyDoc> allMatches = repository.findAll(example);

πŸ’» Maven configuration

Official Releases

<dependency>
  <groupId>com.redis.om</groupId>
  <artifactId>redis-om-spring</artifactId>
  <version>${version}</version>
</dependency>

Release Process

To release a new version of Redis OM Spring:

  1. Ensure all changes are committed and pushed to the main branch
  2. Run the release preparation script: ./scripts/prepare-release.sh <version>
  3. Create a new GitHub release with the tag v<version> (e.g., v0.6.0)
  4. The GitHub workflow will automatically:
    • Build the project
    • Generate artifacts
    • Sign the artifacts with GPG
    • Publish to Maven Central

This process publishes both redis-om-spring and redis-om-spring-ai modules to Maven Central.

⚠️ Starting from version v1.0.0-RC1, Redis OM Spring has been divided into two separate modules:

  • Redis OM Spring – providing modeling and vector indexing capabilities;
  • Redis OM Spring AI – introducing AI capabilities, powered by Spring AI, to automatically generate vector embeddings using popular providers like OpenAI, Azure, Ollama, VertexAI, and more.

To use Redis OM for modeling your domain objects, indexing them, and enabling both querying and Vector Similarity Search features, simply include the dependency for Redis OM Spring as shown below:

<dependency>
  <groupId>com.redis.om</groupId>
  <artifactId>redis-om-spring</artifactId>
  <version>${version}</version>
</dependency>

To enable AI capabilities like automatically converting (un)structured data into vector embeddings and interacting with embedding providers, simply add the dependency for Redis OM Spring AI as shown below:

<dependency>
  <groupId>com.redis.om</groupId>
  <artifactId>redis-om-spring-ai</artifactId>
  <version>${version}</version>
</dependency>

This will unlock powerful AI-driven features for your applications, making data processing and retrieval smarter and more efficient.

Explicitly configuring OM as an annotation processor

For Maven, things normally just work, when you run ./mvnw spring-boot:run. Some users have experienced this not being the case, in which I recommend to explicitly declaring the maven-compiler-plugin in the case below it is paired with an app created with start.spring.io with Spring Boot v3.3.0 (all other versions can be inherited from the parent poms):

<plugin>
  <groupId>org.apache.maven.plugins</groupId>
  <artifactId>maven-compiler-plugin</artifactId>
  <version>${maven-compiler-plugin.version}</version>
  <configuration>
    <annotationProcessorPaths>
      <path>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-configuration-processor</artifactId>
        <version>3.3.0</version>
      </path>
      <path>
        <groupId>org.projectlombok</groupId>
        <artifactId>lombok</artifactId>
        <version>${lombok.version}</version>
      </path>
      <path>
        <groupId>com.redis.om</groupId>
        <artifactId>redis-om-spring</artifactId>
        <version>1.0.0-RC1</version>
      </path>
    </annotationProcessorPaths>
  </configuration>
</plugin>

Snapshots

  <repositories>
    <repository>
      <id>snapshots-repo</id>
      <url>https://s01.oss.sonatype.org/content/repositories/snapshots/</url>
    </repository>
  </repositories>

and

<dependency>
  <groupId>com.redis.om</groupId>
  <artifactId>redis-om-spring</artifactId>
  <version>${version}-SNAPSHOT</version>
</dependency>
<dependency>
  <groupId>com.redis.om</groupId>
  <artifactId>redis-om-spring-ai</artifactId>
  <version>${version}-SNAPSHOT</version>
</dependency>

Ready to learn more? Check out the getting started guide.

🐘 Gradle configuration

Add Repository - Snapshots Only

repositories {
    mavenCentral()
    maven {
        url 'https://s01.oss.sonatype.org/content/repositories/snapshots/'
    }
}

Dependency

ext {
  redisOmVersion = '1.0.0-RC1'
}

dependencies {
  implementation "com.redis.om:redis-om-spring:$redisOmVersion"
  implementation "com.redis.om:redis-om-spring-ai:$redisOmVersion"
  annotationProcessor "com.redis.om:redis-om-spring:$redisOmVersion"
}

πŸ“š Documentation

The Redis OM documentation is available here.

Demos

Embedded Demos

These can be found in the /demos folder:

  • roms-documents:

    • Simple API example of @Document mapping, Spring Repositories and Querying.
    • Run with ./mvnw install -Dmaven.test.skip && ./mvnw spring-boot:run -pl demos/roms-documents
  • roms-hashes:

    • Simple API example of @RedisHash, enhanced secondary indices and querying.
    • Run with ./mvnw install -Dmaven.test.skip && ./mvnw spring-boot:run -pl demos/roms-hashes
  • roms-permits:

    • Port of Elena Kolevska's Quick Start: Using RediSearch with JSON Demo to Redis OM Spring.
    • Run with ./mvnw install -Dmaven.test.skip && ./mvnw spring-boot:run -pl demos/roms-permits
  • roms-vss:

    • Port of Redis Vector Search Demo for fashion product recommendations using vector similarity search.
    • Run with ./mvnw install -Dmaven.test.skip && ./mvnw spring-boot:run -pl demos/roms-vss
  • roms-vss-movies:

    • Movie recommendation system showcasing Redis 8's vector similarity search capabilities.
    • Run with ./mvnw install -Dmaven.test.skip && ./mvnw spring-boot:run -pl demos/roms-vss-movies
  • roms-modeling:

    • Simple API example of modeling, Spring Repositories and Querying.
    • Run with ./mvnw install -Dmaven.test.skip && ./mvnw spring-boot:run -pl demos/roms-modeling
  • roms-vectorizers:

    • Simple API example of vectorizing, Spring Repositories and Querying.
    • Run with ./mvnw install -Dmaven.test.skip && ./mvnw spring-boot:run -pl demos/roms-vectorizers
  • roms-amr-entraid:

    • Demo showing how to connect to Azure Managed Redis (AMR) using Microsoft Entra ID authentication.
    • Run with ./mvnw install -Dmaven.test.skip && ./mvnw spring-boot:run -pl demos/roms-amr-entraid

External Demos

⛏️ Troubleshooting

If you run into trouble or have any questions, we're here to help!

First, check the FAQ. If you don't find the answer there, hit us up on the Redis Discord Server.

✨ So How Do You Get RediSearch and RedisJSON?

Redis OM relies on two source available Redis modules: RediSearch and RedisJSON.

You can run these modules in your self-hosted Redis deployment, or you can use Redis Enterprise, which includes both modules.

To learn more, read our documentation.

πŸ’– Contributing

We'd love your contributions!

Bug reports are especially helpful at this stage of the project. You can open a bug report on GitHub.

You can also contribute documentation -- or just let us know if something needs more detail. Open an issue on GitHub to get started.

Code Style

This project uses the Spotless Maven plugin with Eclipse formatter to enforce a consistent code style. Before submitting a pull request, please make sure your code follows our formatting guidelines by running:

mvn spotless:apply

This will automatically reformat your code to match the project's style. You can also check if your code meets the formatting requirements without changing it:

mvn spotless:check

The main formatting rules include:

  • 2-space indentation (not 4)
  • KNR brace style (braces at end of line)
  • Maximum line length of 100 characters
  • Consistent import ordering (java, javax, org, com, other imports)

πŸ§‘β€πŸ€β€πŸ§‘ Sibling Projects

πŸ“ License

Redis OM uses the MIT license.

About

Spring Data Redis extensions for better search, documents models, and more

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages