Skip to content

Genet from timm #344

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 8 commits into from
Jul 4, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .github/workflows/tests.yml
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,7 @@ jobs:
python -m pip install codecov pytest mock
pip3 install torch==1.9.0+cpu torchvision==0.10.0+cpu torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
pip install .
pip install -U git+https://github.com/rwightman/pytorch-image-models
- name: Test
run: |
python -m pytest -s tests
15 changes: 14 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ The main features of this library are:

- High level API (just two lines to create a neural network)
- 9 models architectures for binary and multi class segmentation (including legendary Unet)
- 106 available encoders
- 109 available encoders
- All encoders have pre-trained weights for faster and better convergence

### [📚 Project Documentation 📚](http://smp.readthedocs.io/)
Expand Down Expand Up @@ -188,6 +188,19 @@ The following is a list of supported encoders in the SMP. Select the appropriate
</div>
</details>

<details>
<summary style="margin-left: 25px;">GERNet</summary>
<div style="margin-left: 25px;">

|Encoder |Weights |Params, M |
|--------------------------------|:------------------------------:|:------------------------------:|
|timm-gernet_s |imagenet |6M |
|timm-gernet_m |imagenet |18M |
|timm-gernet_l |imagenet |28M |

</div>
</details>

<details>
<summary style="margin-left: 25px;">SE-Net</summary>
<div style="margin-left: 25px;">
Expand Down
13 changes: 13 additions & 0 deletions docs/encoders.rst
Original file line number Diff line number Diff line change
Expand Up @@ -136,6 +136,19 @@ RegNet(x/y)
| timm-regnety\_320 | imagenet | 141M |
+---------------------+------------+-------------+

GERNet
~~~~~~

+-------------------------+------------+-------------+
| Encoder | Weights | Params, M |
+=========================+============+=============+
| timm-gernet\_s | imagenet | 6M |
+-------------------------+------------+-------------+
| timm-gernet\_m | imagenet | 18M |
+-------------------------+------------+-------------+
| timm-gernet\_l | imagenet | 28M |
+-------------------------+------------+-------------+

SE-Net
~~~~~~

Expand Down
8 changes: 8 additions & 0 deletions segmentation_models_pytorch/encoders/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,13 @@
from .timm_res2net import timm_res2net_encoders
from .timm_regnet import timm_regnet_encoders
from .timm_sknet import timm_sknet_encoders
try:
from .timm_gernet import timm_gernet_encoders
except ImportError as e:
timm_gernet_encoders = {}
print("Current timm version doesn't support GERNet."
"If GERNet support is needed please update timm")

from ._preprocessing import preprocess_input

encoders = {}
Expand All @@ -36,6 +43,7 @@
encoders.update(timm_res2net_encoders)
encoders.update(timm_regnet_encoders)
encoders.update(timm_sknet_encoders)
encoders.update(timm_gernet_encoders)


def get_encoder(name, in_channels=3, depth=5, weights=None):
Expand Down
121 changes: 121 additions & 0 deletions segmentation_models_pytorch/encoders/timm_gernet.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,121 @@
from timm.models import ByobCfg, BlocksCfg, ByobNet

from ._base import EncoderMixin
import torch.nn as nn


class GERNetEncoder(ByobNet, EncoderMixin):
Copy link
Contributor Author

@Vozf Vozf Feb 11, 2021

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This inherits from byobnet same as new repvgg so we should consider adding generic ByoBnetEncoder to comply with future timm changes https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/byobnet.py#L645

def __init__(self, out_channels, depth=5, **kwargs):
super().__init__(**kwargs)
self._depth = depth
self._out_channels = out_channels
self._in_channels = 3

del self.head

def get_stages(self):
return [
nn.Identity(),
self.stem,
self.stages[0],
self.stages[1],
self.stages[2],
nn.Sequential(self.stages[3], self.stages[4], self.final_conv)
]

def forward(self, x):
stages = self.get_stages()

features = []
for i in range(self._depth + 1):
x = stages[i](x)
features.append(x)

return features

def load_state_dict(self, state_dict, **kwargs):
state_dict.pop("head.fc.weight")
state_dict.pop("head.fc.bias")
super().load_state_dict(state_dict, **kwargs)


regnet_weights = {
'timm-gernet_s': {
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-ger-weights/gernet_s-756b4751.pth',
},
'timm-gernet_m': {
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-ger-weights/gernet_m-0873c53a.pth',
},
'timm-gernet_l': {
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-ger-weights/gernet_l-f31e2e8d.pth',
},
}

pretrained_settings = {}
for model_name, sources in regnet_weights.items():
pretrained_settings[model_name] = {}
for source_name, source_url in sources.items():
pretrained_settings[model_name][source_name] = {
"url": source_url,
'input_range': [0, 1],
'mean': [0.485, 0.456, 0.406],
'std': [0.229, 0.224, 0.225],
'num_classes': 1000
}

timm_gernet_encoders = {
'timm-gernet_s': {
'encoder': GERNetEncoder,
"pretrained_settings": pretrained_settings["timm-gernet_s"],
'params': {
'out_channels': (3, 13, 48, 48, 384, 1920),
'cfg': ByobCfg(
blocks=(
BlocksCfg(type='basic', d=1, c=48, s=2, gs=0, br=1.),
BlocksCfg(type='basic', d=3, c=48, s=2, gs=0, br=1.),
BlocksCfg(type='bottle', d=7, c=384, s=2, gs=0, br=1 / 4),
BlocksCfg(type='bottle', d=2, c=560, s=2, gs=1, br=3.),
BlocksCfg(type='bottle', d=1, c=256, s=1, gs=1, br=3.),
),
stem_chs=13,
num_features=1920,
)
},
},
'timm-gernet_m': {
'encoder': GERNetEncoder,
"pretrained_settings": pretrained_settings["timm-gernet_m"],
'params': {
'out_channels': (3, 32, 128, 192, 640, 2560),
'cfg': ByobCfg(
blocks=(
BlocksCfg(type='basic', d=1, c=128, s=2, gs=0, br=1.),
BlocksCfg(type='basic', d=2, c=192, s=2, gs=0, br=1.),
BlocksCfg(type='bottle', d=6, c=640, s=2, gs=0, br=1 / 4),
BlocksCfg(type='bottle', d=4, c=640, s=2, gs=1, br=3.),
BlocksCfg(type='bottle', d=1, c=640, s=1, gs=1, br=3.),
),
stem_chs=32,
num_features=2560,
)
},
},
'timm-gernet_l': {
'encoder': GERNetEncoder,
"pretrained_settings": pretrained_settings["timm-gernet_l"],
'params': {
'out_channels': (3, 32, 128, 192, 640, 2560),
'cfg': ByobCfg(
blocks=(
BlocksCfg(type='basic', d=1, c=128, s=2, gs=0, br=1.),
BlocksCfg(type='basic', d=2, c=192, s=2, gs=0, br=1.),
BlocksCfg(type='bottle', d=6, c=640, s=2, gs=0, br=1 / 4),
BlocksCfg(type='bottle', d=5, c=640, s=2, gs=1, br=3.),
BlocksCfg(type='bottle', d=4, c=640, s=1, gs=1, br=3.),
),
stem_chs=32,
num_features=2560,
)
},
},
}
9 changes: 5 additions & 4 deletions segmentation_models_pytorch/manet/decoder.py
Original file line number Diff line number Diff line change
Expand Up @@ -56,18 +56,19 @@ def __init__(self, in_channels, skip_channels, out_channels, use_batchnorm=True,
use_batchnorm=use_batchnorm,
)
)
reduced_channels = max(1, skip_channels // reduction)
self.SE_ll = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(skip_channels, skip_channels // reduction, 1),
nn.Conv2d(skip_channels, reduced_channels, 1),
nn.ReLU(inplace=True),
nn.Conv2d(skip_channels // reduction, skip_channels, 1),
nn.Conv2d(reduced_channels, skip_channels, 1),
nn.Sigmoid(),
)
self.SE_hl = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(skip_channels, skip_channels // reduction, 1),
nn.Conv2d(skip_channels, reduced_channels, 1),
nn.ReLU(inplace=True),
nn.Conv2d(skip_channels // reduction, skip_channels, 1),
nn.Conv2d(reduced_channels, skip_channels, 1),
nn.Sigmoid(),
)
self.conv1 = md.Conv2dReLU(
Expand Down