Skip to content

goto_conversion - Powered over 10 Gold Medals and 100 Medals on Kaggle

License

Notifications You must be signed in to change notification settings

gotoConversion/goto_conversion

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

goto_conversion - Powered over 10 Gold Medals and 100 Medals on Kaggle

goto_conversion has powered over 10 🥇 gold-medal-winning solutions and 100 🥈 🥉 medal-winning solutions on Kaggle [6,7]. They include:

Ease of Use

To use goto_conversion, it does not require historical data for model fit, advanced domain knowledge, nor paid computational resources. Linked below provides five examples of how to use goto_conversion in the freely available, Google Colab.

Open in Colab

Abstract

The most common method used to convert betting odds to probabilities is to normalise the inverse odds (Multiplicative conversion). However, this method does not consider the favourite-longshot bias.

To the best of our knowledge, there are two existing methods that attempt to consider the favourite-longshot bias. (i) Shin conversion [1,2,3] maximises the expected profit for the bookmakers assuming a small proportion of bettors have inside information. (ii) Power conversion [4] raises all inverse odds to the same constant power.

Our proposed method goto_conversion reduces all inverse odds by the same units of standard error. This attempts to consider the favourite-longshot bias by utilising the proportionately wider standard errors implied for inverses of longshot odds and vice-versa. Our experiments show goto_conversion converts betting odds to probabilities more robustly than all three of these existing methods.

This package is an implementation of goto_conversion as well as efficient_shin_conversion. The Shin conversion is originally a numerical solution but according to Kizildemir 2024 [5], we can enhance its efficiency by reduction to an analytical solution. We have implemented the enhanced Shin conversion proposed by Kizildemir 2024 as efficient_shin_conversion in this package.

The favourite-longshot bias is not limited to betting markets, it exists in stock markets too. Thus, we applied the original goto_conversion to stock markets by defining the zero_sum variant. Under the same philosophy as the original goto_conversion, zero_sum adjusts all predicted stock prices (e.g. weighted average price) by the same units of standard error to ensure all predicted stock prices relative to the index price (e.g. weighted average nasdaq price) sum to zero. This attempts to consider the favourite-longshot bias by utilising the wider standard errors implied for predicted stock prices with low trade volume and vice-versa.

Pseudo Code

alt text

References

[1] H. S. Shin, “Prices of State Contingent Claims with Insider traders, and the Favorite-Longshot Bias”. The Economic Journal, 1992, 102, pp. 426-435.

[2] E. Štrumbelj, "On determining probability forecasts from gambling odds". International Journal of Forecasting, 2014, Volume 30, Issue 4, pp. 934-943.

[3] M. Berk, "Python implementation of Shin's method for calculating implied probabilities from bookmaker odds"

[4] S. Clarke, S. Kovalchik, M. Ingram, "Adjusting bookmaker’s odds to allow for overround". American Journal of Sports Science, 2017, Volume 5, Issue 6, pp. 45-49.

[5] Kizildemir, M., Akin, E., & Alkan, A. (2024). A Family of Solutions Related to Shin’s Model For Probability Forecasts. Cambridge Open Engage

[6] goto_conversion's Kaggle Profile

[7] Kaggle Main Page

Contact Me

via LinkedIn Message: https://www.linkedin.com/in/goto/