Skip to content

Add support for memory mapping models #586

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 6 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion examples/quantize/quantize.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@ int main(int argc, char ** argv) {

// needed to initialize f16 tables
{
struct ggml_init_params params = { 0, NULL };
struct ggml_init_params params = { 0, NULL, false };
struct ggml_context * ctx = ggml_init(params);
ggml_free(ctx);
}
Expand Down
9 changes: 6 additions & 3 deletions ggml.c
Original file line number Diff line number Diff line change
Expand Up @@ -2419,8 +2419,9 @@ struct ggml_context {
void * mem_buffer;
bool mem_buffer_owned;
bool mem_buffer_mlocked;
bool no_alloc;

int n_objects;
int n_objects;

struct ggml_object * objects_begin;
struct ggml_object * objects_end;
Expand Down Expand Up @@ -2702,6 +2703,7 @@ struct ggml_context * ggml_init(struct ggml_init_params params) {
/*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : malloc(params.mem_size),
/*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
/*.mem_buffer_mlocked =*/ false,
/*.no_alloc =*/ params.no_alloc,
/*.n_objects =*/ 0,
/*.objects_begin =*/ NULL,
/*.objects_end =*/ NULL,
Expand Down Expand Up @@ -2817,7 +2819,7 @@ struct ggml_tensor * ggml_new_tensor_impl(

size_t size_needed = 0;

if (data == NULL) {
if (data == NULL && !ctx->no_alloc) {
size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
for (int i = 1; i < n_dims; i++) {
size_needed *= ne[i];
Expand Down Expand Up @@ -2901,7 +2903,7 @@ struct ggml_tensor * ggml_new_tensor_impl(
/*.perf_runs =*/ 0,
/*.perf_cycles =*/ 0,
/*.perf_time_us =*/ 0,
/*.data =*/ data == NULL ? (void *)(result + 1) : data,
/*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
/*.pad =*/ { 0 },
};

Expand Down Expand Up @@ -10164,6 +10166,7 @@ enum ggml_opt_result ggml_opt(
struct ggml_init_params params_ctx = {
.mem_size = 16*1024*1024,
.mem_buffer = NULL,
.no_alloc = false,
};

ctx = ggml_init(params_ctx);
Expand Down
1 change: 1 addition & 0 deletions ggml.h
Original file line number Diff line number Diff line change
Expand Up @@ -316,6 +316,7 @@ struct ggml_init_params {
// memory pool
size_t mem_size; // bytes
void * mem_buffer; // if NULL, memory will be allocated internally
bool no_alloc; // don't allocate memory for the tensor data
};

void ggml_time_init(void); // call this once at the beginning of the program
Expand Down
132 changes: 113 additions & 19 deletions llama.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,17 @@
#include <cassert>
#include <cstring>

// mmap
#if defined (__unix__) || defined (__APPLE__)
# include <sys/mman.h>
# include <fcntl.h>
# include <unistd.h>
#elif defined(_WIN32)
# define WIN32_LEAN_AND_MEAN
# include <Windows.h>
//#include <Memoryapi.h>
#endif

#define LLAMA_USE_SCRATCH
#define LLAMA_MAX_SCRATCH_BUFFERS 16

Expand Down Expand Up @@ -142,6 +153,10 @@ struct llama_model {
// the model memory buffer
std::vector<uint8_t> buf;

// model memory mapped file
void * mm_addr = NULL;
size_t mm_length = 0;

// tensors
int n_loaded;
std::unordered_map<std::string, struct ggml_tensor *> tensors;
Expand Down Expand Up @@ -246,6 +261,7 @@ static bool kv_cache_init(
struct ggml_init_params params;
params.mem_size = cache.buf.size();
params.mem_buffer = cache.buf.data();
params.no_alloc = false;

cache.ctx = ggml_init(params);

Expand Down Expand Up @@ -288,6 +304,59 @@ struct llama_context_params llama_context_default_params() {
// model loading
//

static void mmap_file(const char* fname, void * &mm_addr, size_t &mm_length) {
#if defined(MAP_FAILED)
// POSIX
int fd = open(fname, O_RDONLY);
mm_length = lseek(fd, 0, SEEK_END);
mm_addr = mmap(NULL, mm_length, PROT_READ, MAP_SHARED, fd, 0);
close(fd);
if (mm_addr == MAP_FAILED) {
perror("mmap failed");
mm_addr = NULL;
mm_length = 0;
}
#elif defined(_WIN32)
mm_addr = NULL;

HANDLE hFile = CreateFileA(filename, GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
if (hFile == INVALID_HANDLE_VALUE) {
return;
}

// not really necessary
LARGE_INTEGER fileSize;
GetFileSizeEx(hFile, &fileSize);
mm_length = fileSize;

HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
CloseHandle(hFile);

if (hMapping == NULL) {
return;
}

mm_addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
CloseHandle(hMapping);
#else
mm_addr = NULL;
mm_length = 0;
(void)(fname); // suppress warnings
#endif
}

static void munmap_file(void * addr, size_t length) {
#if defined(MAP_FAILED)
// POSIX
munmap(addr, length);
#elif defined(_WIN32)
UnmapViewOfFile(addr);
#else
(void)(addr); // suppress warnings
(void)(length);
#endif
}

static bool llama_model_load(
const std::string & fname,
llama_context & lctx,
Expand All @@ -303,6 +372,7 @@ static bool llama_model_load(

lctx.t_start_us = t_start_us;

// TODO: this could probably be smaller when using mmap
std::vector<char> f_buf(1024*1024);

auto & model = lctx.model;
Expand Down Expand Up @@ -449,39 +519,50 @@ static bool llama_model_load(
}
}

bool use_mmap = (n_parts == 1);

// try to memory map the model file
void * mm_addr = NULL;
if (use_mmap) {
mmap_file(fname.c_str(), model.mm_addr, model.mm_length);
if (model.mm_addr == NULL) {
use_mmap = false;
}
else {
mm_addr = model.mm_addr;
}
}

auto & ctx = model.ctx;

size_t ctx_size = 0;

{
const auto & hparams = model.hparams;

const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_ctx = hparams.n_ctx;
const int n_vocab = hparams.n_vocab;

ctx_size += n_embd*n_vocab*ggml_type_sizef(vtype); // tok_embeddings

ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // norm
if (!use_mmap) {
ctx_size += n_embd*n_vocab*ggml_type_sizef(vtype); // tok_embeddings

ctx_size += n_embd*n_vocab*ggml_type_sizef(vtype); // output
ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // norm

ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // attention_norm
ctx_size += n_embd*n_vocab*ggml_type_sizef(vtype); // output

ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wq
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wk
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wv
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wo
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // attention_norm

ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ffn_norm
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wq
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wk
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wv
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wo

ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w1
ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w2
ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w3
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ffn_norm

ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(memory_type); // memory_k
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(memory_type); // memory_v
ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w1
ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w2
ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w3
}

ctx_size += (5 + 10*n_layer)*256; // object overhead

Expand Down Expand Up @@ -514,6 +595,7 @@ static bool llama_model_load(
struct ggml_init_params params = {
/*.mem_size =*/ lctx.model.buf.size(),
/*.mem_buffer =*/ lctx.model.buf.data(),
/*.no_alloc =*/ use_mmap,
};

model.ctx = ggml_init(params);
Expand Down Expand Up @@ -595,7 +677,7 @@ static bool llama_model_load(
fname_part += "." + std::to_string(i);
}

fprintf(stderr, "%s: loading model part %d/%d from '%s'\n", __func__, i+1, n_parts, fname_part.c_str());
fprintf(stderr, "%s: loading model part %d/%d from '%s'%s\n", __func__, i+1, n_parts, fname_part.c_str(), use_mmap ? " (memory mapped)" : "");

fin = std::ifstream(fname_part, std::ios::binary);
fin.rdbuf()->pubsetbuf(f_buf.data(), f_buf.size());
Expand Down Expand Up @@ -736,7 +818,14 @@ static bool llama_model_load(
}

if (part_id == 0) {
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
if (mm_addr) {
off_t offset = fin.tellg();
tensor->data = (char *) mm_addr + offset;
fin.seekg(ggml_nbytes(tensor), std::ios::cur);
}
else {
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
}
} else {
fin.seekg(ggml_nbytes(tensor), std::ios::cur);
}
Expand Down Expand Up @@ -849,6 +938,7 @@ static bool llama_eval_internal(
struct ggml_init_params params = {
/*.mem_size =*/ buf_compute.size(),
/*.mem_buffer =*/ buf_compute.data(),
/*.no_alloc =*/ false,
};

struct ggml_context * ctx0 = ggml_init(params);
Expand Down Expand Up @@ -1705,6 +1795,10 @@ void llama_free(struct llama_context * ctx) {
ggml_free(ctx->model.ctx);
}

if (ctx->model.mm_addr) {
munmap_file(ctx->model.mm_addr, ctx->model.mm_length);
}

delete ctx;
}

Expand Down