Skip to content

Fix for #2023 #2314

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 2 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 4 additions & 13 deletions convert.py
Original file line number Diff line number Diff line change
Expand Up @@ -231,19 +231,10 @@ def __init__(self, fname_tokenizer: Path, fname_added_tokens: Optional[Path]) ->
def sentencepiece_tokens(self) -> Iterable[Tuple[bytes, float]]:
tokenizer = self.sentencepiece_tokenizer
for i in range(tokenizer.vocab_size()):
text: bytes
if tokenizer.is_unknown(i):
text = " \u2047 ".encode("utf-8")
elif tokenizer.is_control(i):
text = b""
elif tokenizer.is_byte(i):
piece = tokenizer.id_to_piece(i)
if len(piece) != 6:
raise Exception(f"Invalid token: {piece}")
byte_value = int(piece[3:-1], 16)
text = struct.pack("B", byte_value)
else:
text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
# TODO: How do we want to support is_unknown, is_control, is_byte and is_unused(i)?
piece = tokenizer.id_to_piece(i)
text: bytes = piece.encode("utf-8")

score: float = tokenizer.get_score(i)
yield text, score

Expand Down
3 changes: 2 additions & 1 deletion llama.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1805,7 +1805,8 @@ struct llama_tokenizer {
size_t offs = 0;
while (offs < text.size()) {
llama_sp_symbol sym;
size_t char_len = std::min(text.size() - offs, utf8_len(text[offs]));
assert(utf8_len(text[offs]) <= text.size() - offs);
size_t char_len = utf8_len(text[offs]);
sym.text = text.c_str() + offs;
sym.n = char_len;
offs += char_len;
Expand Down
1 change: 1 addition & 0 deletions tests/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -11,5 +11,6 @@ llama_add_test(test-quantize-fns.cpp)
llama_add_test(test-quantize-perf.cpp)
llama_add_test(test-sampling.cpp)
llama_add_test(test-tokenizer-0.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab.bin)
llama_add_test(test-tokenizer-1.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab.bin)
llama_add_test(test-grad0.c) # SLOW
# llama_add_test(test-opt.c) # SLOW
103 changes: 103 additions & 0 deletions tests/test-tokenizer-1.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,103 @@
#include "llama.h"

#include <cassert>
#include <cstdio>
#include <string>
#include <codecvt>
#include <map>
#include <vector>

std::string detokenize(llama_context * ctx, llama_token * tokens, int count) {
std::string result;
for (int i = 0; i < count; ++i) {
result += llama_token_to_str(ctx, tokens[i]);
if (i < count - 1) {
result += "_";
}
}
return result;
}

int main(int argc, char **argv) {
if (argc < 2) {
fprintf(stderr, "Usage: %s <vocab-file>\n", argv[0]);
return 1;
}

const std::string fname = argv[1];

fprintf(stderr, "%s : reading vocab from: '%s'\n", __func__, fname.c_str());

llama_model * model;
llama_context * ctx;

llama_backend_init(false);

// load the vocab
{
auto lparams = llama_context_default_params();

lparams.vocab_only = true;

model = llama_load_model_from_file(fname.c_str(), lparams);

if (model == NULL) {
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
return 1;
}

ctx = llama_new_context_with_model(model, lparams);

if (ctx == NULL) {
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
llama_free_model(model);
return 1;
}
}

const int n_vocab = llama_n_vocab(ctx);

if (n_vocab != 32000) {
fprintf(stderr, "%s : expected 32000 tokens, got %d\n", __func__, n_vocab);
llama_free_model(model);
llama_free(ctx);
return 2;
}

for (int i = 0; i < n_vocab; ++i) {
const char * forward = llama_token_to_str(ctx, i);
llama_token tokens[strlen(forward)];
auto n = llama_tokenize(ctx, forward, tokens, strlen(forward), false);
if (n == 1) {
if (i != tokens[0]) {
const char* backward = llama_token_to_str(ctx, tokens[0]);
fprintf(stderr, "%s : error: token %d is string %s but tokenize() returns token %d %s\n", __func__, i, forward, tokens[0], backward);
}
} else {
if (i <= 258) {
fprintf(stderr, "%s : info: token %d is string %s and tokenize() returns tokens %s\n", __func__, i, forward, detokenize(ctx, tokens, n).c_str());
} else {
fprintf(stderr, "%s : error: token %d is string %s but tokenize() returns tokens %s\n", __func__, i, forward, detokenize(ctx, tokens, n).c_str());
}
}
}

std::wstring string_to_convert;
std::wstring_convert<std::codecvt_utf8<wchar_t>, wchar_t> converter;
for (wchar_t ch = 0x0000; ch < 0xffff; ++ch) {
std::wstring wstr(1, ch);
std::string str = converter.to_bytes(wstr);
llama_token tokens[strlen(str.c_str())];
auto n = llama_tokenize(ctx, str.c_str(), tokens, str.length(), false);
if (n == 1) {
fprintf(stderr, "%s : info: %s tokenized to %d \n", __func__, str.c_str(), tokens[0]);
}
}

llama_free_model(model);
llama_free(ctx);

llama_backend_free();

return 0;
}