-
Notifications
You must be signed in to change notification settings - Fork 373
Show loading options for DataFrame #21
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Closed
Closed
Changes from all commits
Commits
Show all changes
2 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,253 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Loading data \n", | ||
"\n", | ||
"Getting data into the DataFrame is the most important step. The DataFrame itself supports [loading from a csv](https://docs.microsoft.com/en-us/dotnet/api/microsoft.data.analysis.dataframe.loadcsvfromstring?view=ml-dotnet-preview#microsoft-data-analysis-dataframe-loadcsvfromstring(system-string-system-char-system-boolean-system-string()-system-type()-system-int64-system-int32-system-boolean)). Not all data is already in a csv file. There is the option to convert from an IDataView into a DataFrame. ML.NET supports loading from a few different sources into an IDataView. See docs [here](https://docs.microsoft.com/en-us/dotnet/machine-learning/how-to-guides/load-data-ml-net). \n", | ||
"\n", | ||
"If you run into issue, please file them in our [Github repo](https://github.com/dotnet/machinelearning/issues). If possible, please include the problem data set. " | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"dotnet_interactive": { | ||
"language": "csharp" | ||
}, | ||
"vscode": { | ||
"languageId": "dotnet-interactive.csharp" | ||
} | ||
}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/html": [ | ||
"<div><div></div><div></div><div><strong>Installed Packages</strong><ul><li><span>DataView.InteractiveExtension, 1.0.45</span></li><li><span>Microsoft.Data.Analysis, 0.19.1</span></li><li><span>Microsoft.ML, 1.7.1</span></li></ul></div></div>" | ||
] | ||
}, | ||
"metadata": {}, | ||
"output_type": "display_data" | ||
}, | ||
{ | ||
"data": { | ||
"text/markdown": [ | ||
"Loading extensions from `DataView.InteractiveExtension.dll`" | ||
] | ||
}, | ||
"metadata": {}, | ||
"output_type": "display_data" | ||
}, | ||
{ | ||
"data": { | ||
"text/markdown": [ | ||
"Loading extensions from `Microsoft.Data.Analysis.Interactive.dll`" | ||
] | ||
}, | ||
"metadata": {}, | ||
"output_type": "display_data" | ||
}, | ||
{ | ||
"data": { | ||
"text/markdown": [ | ||
"Added support IDataView to kernel .NET." | ||
] | ||
}, | ||
"metadata": {}, | ||
"output_type": "display_data" | ||
} | ||
], | ||
"source": [ | ||
"// load extension to get data frame api, visualization and formatting\n", | ||
"\n", | ||
"#r \"nuget: Microsoft.Data.Analysis, 0.19.1\"\n", | ||
"#r \"nuget: DataView.InteractiveExtension, 1.0.45\"\n", | ||
"#r \"nuget: Microsoft.ML\"" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Directly from CSV\n", | ||
"We can easily load our data directly from a CSV into the DataFrame. " | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"dotnet_interactive": { | ||
"language": "csharp" | ||
}, | ||
"vscode": { | ||
"languageId": "dotnet-interactive.csharp" | ||
} | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"var csvFilePath = @\"data/usa_hockey.csv\";" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"dotnet_interactive": { | ||
"language": "csharp" | ||
}, | ||
"vscode": { | ||
"languageId": "dotnet-interactive.csharp" | ||
} | ||
}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/html": [ | ||
"<table id=\"table_637886533772330844\"><thead><tr><th><i>index</i></th><th>Birthday</th><th>Nat</th><th>Height</th><th>Weight</th><th>DraftYear</th><th>OverallDraft</th><th>Hand</th><th>Last Name</th><th>First Name</th><th>Position</th><th>Team</th><th>GamesPlayed</th><th>Goals</th><th>Assists</th><th>Points</th><th>PIM</th><th>Shifts</th><th>TimeOnIce</th></tr></thead><tbody><tr><td><i><div class=\"dni-plaintext\">0</div></i></td><td>88-16-04</td><td>USA</td><td><div class=\"dni-plaintext\">72</div></td><td><div class=\"dni-plaintext\">218</div></td><td><div class=\"dni-plaintext\">2006</div></td><td><div class=\"dni-plaintext\">7</div></td><td>R</td><td>Okposo</td><td>Kyle</td><td>RW</td><td>BUF</td><td><div class=\"dni-plaintext\">65</div></td><td><div class=\"dni-plaintext\">19</div></td><td><div class=\"dni-plaintext\">26</div></td><td><div class=\"dni-plaintext\">45</div></td><td><div class=\"dni-plaintext\">24</div></td><td><div class=\"dni-plaintext\">1443</div></td><td><div class=\"dni-plaintext\">73983</div></td></tr><tr><td><i><div class=\"dni-plaintext\">1</div></i></td><td>90-08-10</td><td>USA</td><td><div class=\"dni-plaintext\">76</div></td><td><div class=\"dni-plaintext\">210</div></td><td><div class=\"dni-plaintext\">2009</div></td><td><div class=\"dni-plaintext\">114</div></td><td>L</td><td>Helgeson</td><td>Seth</td><td>D</td><td>N.J</td><td><div class=\"dni-plaintext\">9</div></td><td><div class=\"dni-plaintext\">1</div></td><td><div class=\"dni-plaintext\">0</div></td><td><div class=\"dni-plaintext\">1</div></td><td><div class=\"dni-plaintext\">15</div></td><td><div class=\"dni-plaintext\">177</div></td><td><div class=\"dni-plaintext\">7273</div></td></tr><tr><td><i><div class=\"dni-plaintext\">2</div></i></td><td>96-26-11</td><td>USA</td><td><div class=\"dni-plaintext\">77</div></td><td><div class=\"dni-plaintext\">203</div></td><td><div class=\"dni-plaintext\">2015</div></td><td><div class=\"dni-plaintext\">37</div></td><td>R</td><td>Carlo</td><td>Brandon</td><td>D</td><td>BOS</td><td><div class=\"dni-plaintext\">82</div></td><td><div class=\"dni-plaintext\">6</div></td><td><div class=\"dni-plaintext\">10</div></td><td><div class=\"dni-plaintext\">16</div></td><td><div class=\"dni-plaintext\">59</div></td><td><div class=\"dni-plaintext\">2080</div></td><td><div class=\"dni-plaintext\">102414</div></td></tr><tr><td><i><div class=\"dni-plaintext\">3</div></i></td><td>90-16-11</td><td>USA</td><td><div class=\"dni-plaintext\">74</div></td><td><div class=\"dni-plaintext\">219</div></td><td><div class=\"dni-plaintext\"><null></div></td><td><div class=\"dni-plaintext\"><null></div></td><td>L</td><td>Schaller</td><td>Tim</td><td>C</td><td>BOS</td><td><div class=\"dni-plaintext\">59</div></td><td><div class=\"dni-plaintext\">7</div></td><td><div class=\"dni-plaintext\">7</div></td><td><div class=\"dni-plaintext\">14</div></td><td><div class=\"dni-plaintext\">23</div></td><td><div class=\"dni-plaintext\">1035</div></td><td><div class=\"dni-plaintext\">43436</div></td></tr><tr><td><i><div class=\"dni-plaintext\">4</div></i></td><td>92-20-03</td><td>USA</td><td><div class=\"dni-plaintext\">72</div></td><td><div class=\"dni-plaintext\">215</div></td><td><div class=\"dni-plaintext\">2010</div></td><td><div class=\"dni-plaintext\">37</div></td><td>R</td><td>Faulk</td><td>Justin</td><td>D</td><td>CAR</td><td><div class=\"dni-plaintext\">75</div></td><td><div class=\"dni-plaintext\">17</div></td><td><div class=\"dni-plaintext\">20</div></td><td><div class=\"dni-plaintext\">37</div></td><td><div class=\"dni-plaintext\">32</div></td><td><div class=\"dni-plaintext\">1987</div></td><td><div class=\"dni-plaintext\">104133</div></td></tr><tr><td><i><div class=\"dni-plaintext\">5</div></i></td><td>94-01-05</td><td>USA</td><td><div class=\"dni-plaintext\">74</div></td><td><div class=\"dni-plaintext\">205</div></td><td><div class=\"dni-plaintext\">2012</div></td><td><div class=\"dni-plaintext\">120</div></td><td>L</td><td>Slavin</td><td>Jaccob</td><td>D</td><td>CAR</td><td><div class=\"dni-plaintext\">82</div></td><td><div class=\"dni-plaintext\">5</div></td><td><div class=\"dni-plaintext\">29</div></td><td><div class=\"dni-plaintext\">34</div></td><td><div class=\"dni-plaintext\">12</div></td><td><div class=\"dni-plaintext\">2135</div></td><td><div class=\"dni-plaintext\">115316</div></td></tr><tr><td><i><div class=\"dni-plaintext\">6</div></i></td><td>90-20-06</td><td>USA</td><td><div class=\"dni-plaintext\">75</div></td><td><div class=\"dni-plaintext\">221</div></td><td><div class=\"dni-plaintext\">2008</div></td><td><div class=\"dni-plaintext\">128</div></td><td>R</td><td>Pateryn</td><td>Greg</td><td>D</td><td>DAL/MTL</td><td><div class=\"dni-plaintext\">36</div></td><td><div class=\"dni-plaintext\">1</div></td><td><div class=\"dni-plaintext\">8</div></td><td><div class=\"dni-plaintext\">9</div></td><td><div class=\"dni-plaintext\">10</div></td><td><div class=\"dni-plaintext\">720</div></td><td><div class=\"dni-plaintext\">33312</div></td></tr><tr><td><i><div class=\"dni-plaintext\">7</div></i></td><td>90-27-05</td><td>USA</td><td><div class=\"dni-plaintext\">74</div></td><td><div class=\"dni-plaintext\">196</div></td><td><div class=\"dni-plaintext\">2009</div></td><td><div class=\"dni-plaintext\">198</div></td><td>R</td><td>Dowd</td><td>Nic</td><td>C</td><td>L.A</td><td><div class=\"dni-plaintext\">70</div></td><td><div class=\"dni-plaintext\">6</div></td><td><div class=\"dni-plaintext\">16</div></td><td><div class=\"dni-plaintext\">22</div></td><td><div class=\"dni-plaintext\">25</div></td><td><div class=\"dni-plaintext\">1230</div></td><td><div class=\"dni-plaintext\">52314</div></td></tr><tr><td><i><div class=\"dni-plaintext\">8</div></i></td><td>90-16-07</td><td>USA</td><td><div class=\"dni-plaintext\">75</div></td><td><div class=\"dni-plaintext\">221</div></td><td><div class=\"dni-plaintext\"><null></div></td><td><div class=\"dni-plaintext\"><null></div></td><td>L</td><td>Lashoff</td><td>Brian</td><td>D</td><td>DET</td><td><div class=\"dni-plaintext\">5</div></td><td><div class=\"dni-plaintext\">0</div></td><td><div class=\"dni-plaintext\">0</div></td><td><div class=\"dni-plaintext\">0</div></td><td><div class=\"dni-plaintext\">0</div></td><td><div class=\"dni-plaintext\">93</div></td><td><div class=\"dni-plaintext\">3754</div></td></tr><tr><td><i><div class=\"dni-plaintext\">9</div></i></td><td>86-09-08</td><td>USA</td><td><div class=\"dni-plaintext\">71</div></td><td><div class=\"dni-plaintext\">197</div></td><td><div class=\"dni-plaintext\"><null></div></td><td><div class=\"dni-plaintext\"><null></div></td><td>R</td><td>Cannone</td><td>Patrick</td><td>C</td><td>MIN</td><td><div class=\"dni-plaintext\">3</div></td><td><div class=\"dni-plaintext\">0</div></td><td><div class=\"dni-plaintext\">0</div></td><td><div class=\"dni-plaintext\">0</div></td><td><div class=\"dni-plaintext\">0</div></td><td><div class=\"dni-plaintext\">35</div></td><td><div class=\"dni-plaintext\">1419</div></td></tr></tbody></table>" | ||
] | ||
}, | ||
"metadata": {}, | ||
"output_type": "display_data" | ||
} | ||
], | ||
"source": [ | ||
"using Microsoft.Data.Analysis;\n", | ||
"\n", | ||
"var csvDataFrame = DataFrame.LoadCsv(csvFilePath);\n", | ||
"csvDataFrame" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## ML.NET IDataView Loader\n", | ||
"You may want to load from a different data source. ML.NET supports many different data souces, and we can convert an IDataView into a DataFrame. Find out more about IDataViews [here](https://github.com/dotnet/machinelearning/blob/main/docs/code/IDataViewDesignPrinciples.md). " | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"dotnet_interactive": { | ||
"language": "csharp" | ||
}, | ||
"vscode": { | ||
"languageId": "dotnet-interactive.csharp" | ||
} | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"using Microsoft.ML.Data; \n", | ||
"\n", | ||
"public class SalaryData\n", | ||
"{\n", | ||
" [LoadColumn(0)]\n", | ||
" public float Salary { get; set; }\n", | ||
"\n", | ||
" [LoadColumn(1)]\n", | ||
" public string Name { get; set; }\n", | ||
"}" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### From File" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"dotnet_interactive": { | ||
"language": "csharp" | ||
}, | ||
"vscode": { | ||
"languageId": "dotnet-interactive.csharp" | ||
} | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"using Microsoft.ML;\n", | ||
"using Microsoft.ML.Data;\n", | ||
"using System;\n", | ||
"using System.Collections.Generic;\n", | ||
"using System.Linq;\n", | ||
"\n", | ||
"//Create MLContext\n", | ||
"MLContext mlContext = new MLContext();\n", | ||
"\n", | ||
"//Load Data\n", | ||
"IDataView data = mlContext.Data.LoadFromTextFile<SalaryData>(\"data/playerSalary.csv\", separatorChar: ',', hasHeader: true);\n", | ||
"var df = data.ToDataFrame();\n", | ||
"\n", | ||
"df" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### From JSON" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"dotnet_interactive": { | ||
"language": "csharp" | ||
}, | ||
"vscode": { | ||
"languageId": "dotnet-interactive.csharp" | ||
} | ||
}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/html": [ | ||
"<table id=\"table_637886552733619009\"><thead><tr><th><i>index</i></th><th>Salary</th><th>Name</th></tr></thead><tbody><tr><td><i><div class=\"dni-plaintext\">0</div></i></td><td><div class=\"dni-plaintext\">3000000</div></td><td>Adam Larsson</td></tr><tr><td><i><div class=\"dni-plaintext\">1</div></i></td><td><div class=\"dni-plaintext\">1600000</div></td><td>Andrej Sustr</td></tr><tr><td><i><div class=\"dni-plaintext\">2</div></i></td><td><div class=\"dni-plaintext\">2200000</div></td><td>Antoine Roussel</td></tr><tr><td><i><div class=\"dni-plaintext\">3</div></i></td><td><div class=\"dni-plaintext\">950000</div></td><td>Anton Rodin</td></tr></tbody></table>" | ||
] | ||
}, | ||
"metadata": {}, | ||
"output_type": "display_data" | ||
} | ||
], | ||
"source": [ | ||
"using Newtonsoft.Json;\n", | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I would recommend using |
||
"using System.IO;\n", | ||
"\n", | ||
"// Load the json file into an ennumerable, then into the data view from the ennumerable. \n", | ||
"var accounts = JsonConvert.DeserializeObject<List<SalaryData>>(File.ReadAllText(@\"data\\playerSalary.json\"));\n", | ||
"IDataView dataView = mlContext.Data.LoadFromEnumerable<SalaryData>(accounts);\n", | ||
"\n", | ||
"// Convert to DataFrame\n", | ||
"var jsonDataFrame = dataView.ToDataFrame(); \n", | ||
"\n", | ||
"jsonDataFrame" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": ".NET (C#)", | ||
"language": "C#", | ||
"name": ".net-csharp" | ||
}, | ||
"language_info": { | ||
"file_extension": ".cs", | ||
"mimetype": "text/x-csharp", | ||
"name": "C#", | ||
"pygments_lexer": "csharp", | ||
"version": "8.0" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,18 @@ | ||
[ | ||
{ | ||
"Salary": 3000000, | ||
"Name": "Adam Larsson" | ||
}, | ||
{ | ||
"Salary": 1600000, | ||
"Name": "Andrej Sustr" | ||
}, | ||
{ | ||
"Salary": 2200000, | ||
"Name": "Antoine Roussel" | ||
}, | ||
{ | ||
"Salary": 950000, | ||
"Name": "Anton Rodin" | ||
} | ||
] |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
REF-Loading Data into DataFrame.ipynb