Scale a double-precision complex floating-point vector by a double-precision complex floating-point constant.
var zscal = require( '@stdlib/blas/base/wasm/zscal' );
Scales values from zx
by za
.
var Complex128Array = require( '@stdlib/array/complex128' );
var Complex128 = require( '@stdlib/complex/float64/ctor' );
// Define a strided array:
var zx = new Complex128Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
// Define a scalar constant:
var za = new Complex128( 2.0, 2.0 );
// Perform operation:
zscal.main( zx.length, za, zx, 1 );
// zx => <Complex128Array>[ -2.0, 6.0, -2.0, 14.0, -2.0, 22.0 ]
The function has the following parameters:
- N: number of indexed elements.
- za: scalar
Complex128
constant. - zx: input
Complex128Array
. - strideX: index increment for
zx
.
The N
and stride parameters determine which elements in the input strided array are accessed at runtime. For example, to scale every other value in zx
by za
,
var Complex128Array = require( '@stdlib/array/complex128' );
var Complex128 = require( '@stdlib/complex/float64/ctor' );
// Define a strided array:
var zx = new Complex128Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
// Define a scalar constant:
var za = new Complex128( 2.0, 2.0 );
// Perform operation:
zscal.main( 2, za, zx, 2 );
// zx => <Complex128Array>[ -2.0, 6.0, 3.0, 4.0, -2.0, 22.0 ]
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Complex128Array = require( '@stdlib/array/complex128' );
var Complex128 = require( '@stdlib/complex/float64/ctor' );
// Initial array:
var zx0 = new Complex128Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
// Define a scalar constant:
var za = new Complex128( 2.0, 2.0 );
// Create an offset view:
var zx1 = new Complex128Array( zx0.buffer, zx0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
// Scales every other value from `zx1` by `za`...
zscal.main( 3, za, zx1, 1 );
// zx0 => <Complex128Array>[ 1.0, 2.0, -2.0, 14.0, -2.0, 22.0, -2.0, 30.0 ]
Scales values from zx
by za
using alternative indexing semantics.
var Complex128Array = require( '@stdlib/array/complex128' );
var Complex128 = require( '@stdlib/complex/float64/ctor' );
// Define a strided array:
var zx = new Complex128Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
// Define a scalar constant:
var za = new Complex128( 2.0, 2.0 );
// Perform operation:
zscal.ndarray( zx.length, za, zx, 1, 0 );
// zx => <Complex128Array>[ -2.0, 6.0, -2.0, 14.0, -2.0, 22.0 ]
The function has the following additional parameters:
- offsetX: starting index for
zx
.
While typed array
views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to scale every other value in the input strided array starting from the second element,
var Complex128Array = require( '@stdlib/array/complex128' );
var Complex128 = require( '@stdlib/complex/float64/ctor' );
var zx = new Complex128Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var za = new Complex128( 2.0, 2.0 );
zscal.ndarray( 2, za, zx, 2, 1 );
// zx => <Complex128Array>[ 1.0, 2.0, -2.0, 14.0, 5.0, 6.0, -2.0, 30.0 ]
Returns a new WebAssembly module wrapper instance which uses the provided WebAssembly memory instance as its underlying memory.
var Memory = require( '@stdlib/wasm/memory' );
// Create a new memory instance with an initial size of 10 pages (640KiB) and a maximum size of 100 pages (6.4MiB):
var mem = new Memory({
'initial': 10,
'maximum': 100
});
// Create a BLAS routine:
var mod = new zscal.Module( mem );
// returns <Module>
// Initialize the routine:
mod.initializeSync();
Scales values from zx
by za
.
var Memory = require( '@stdlib/wasm/memory' );
var oneTo = require( '@stdlib/array/one-to' );
var ones = require( '@stdlib/array/ones' );
var zeros = require( '@stdlib/array/zeros' );
var bytesPerElement = require( '@stdlib/ndarray/base/bytes-per-element' );
var Float64Array = require( '@stdlib/array/float64' );
var Complex128Array = require( '@stdlib/array/complex128' );
var reinterpretComplex64 = require( '@stdlib/strided/base/reinterpret-complex128' );
var zscal = require( '@stdlib/blas/base/wasm/zscal' );
// Create a new memory instance with an initial size of 10 pages (320KiB) and a maximum size of 100 pages (6.4MiB):
var mem = new Memory({
'initial': 10,
'maximum': 100
});
// Create a BLAS routine:
var mod = new zscal.Module( mem );
// returns <Module>
// Initialize the routine:
mod.initializeSync();
// Define a vector data type:
var dtype = 'complex128';
// Specify a vector length:
var N = 5;
// Define a pointer (i.e., byte offset) for storing the input vector:
var xptr = 0;
// Define a pointer for storing a complex number:
var zptr = N * bytesPerElement( dtype );
// Write vector values to module memory:
var xbuf = oneTo( N*2, 'float64' );
var x = new Complex128Array( xbuf.buffer );
mod.write( xptr, x );
// Write a complex number to module memory:
mod.write( zptr, new Float64Array( [ 2.0, 2.0 ] ) );
// Perform computation:
mod.main( N, zptr, xptr, 1 );
// Read out the results:
var view = zeros( N, dtype );
mod.read( xptr, view );
console.log( reinterpretComplex64( view, 0 ) );
// => <Float64Array>[ -2.0, 6.0, -2.0, 14.0, -2.0, 22.0, -2.0, 30.0, -2.0, 38.0 ]
The function has the following parameters:
- N: number of indexed elements.
- zap: pointer (i.e., byte offset) to a scalar
Complex128
constant. - zxp: input
Complex128Array
pointer (i.e., byte offset). - sx: index increment for
zx
.
Scales values from zx
by za
using alternative indexing semantics.
var Memory = require( '@stdlib/wasm/memory' );
var oneTo = require( '@stdlib/array/one-to' );
var ones = require( '@stdlib/array/ones' );
var zeros = require( '@stdlib/array/zeros' );
var bytesPerElement = require( '@stdlib/ndarray/base/bytes-per-element' );
var Float64Array = require( '@stdlib/array/float64' );
var Complex128Array = require( '@stdlib/array/complex128' );
var reinterpretComplex64 = require( '@stdlib/strided/base/reinterpret-complex128' );
var zscal = require( '@stdlib/blas/base/wasm/zscal' );
// Create a new memory instance with an initial size of 10 pages (320KiB) and a maximum size of 100 pages (6.4MiB):
var mem = new Memory({
'initial': 10,
'maximum': 100
});
// Create a BLAS routine:
var mod = new zscal.Module( mem );
// returns <Module>
// Initialize the routine:
mod.initializeSync();
// Define a vector data type:
var dtype = 'complex128';
// Specify a vector length:
var N = 5;
// Define a pointer (i.e., byte offset) for storing the input vector:
var xptr = 0;
// Define a pointer for storing a complex number:
var zptr = N * bytesPerElement( dtype );
// Write vector values to module memory:
var xbuf = oneTo( N*2, 'float64' );
var x = new Complex128Array( xbuf.buffer );
mod.write( xptr, x );
// Write a complex number to module memory:
mod.write( zptr, new Float64Array( [ 2.0, 2.0 ] ) );
// Perform computation:
mod.ndarray( N, zptr, xptr, 1, 0 );
// Read out the results:
var view = zeros( N, dtype );
mod.read( xptr, view );
console.log( reinterpretComplex64( view, 0 ) );
// => <Float64Array>[ -2.0, 6.0, -2.0, 14.0, -2.0, 22.0, -2.0, 30.0, -2.0, 38.0 ]
The function has the following additional parameters:
- ox: starting index for
x
.
- If
N <= 0
,zx
is left unchanged. - This package implements routines using WebAssembly. When provided arrays which are not allocated on a
zscal
module memory instance, data must be explicitly copied to module memory prior to computation. Data movement may entail a performance cost, and, thus, if you are using arrays external to module memory, you should prefer using@stdlib/blas/base/zscal
. However, if working with arrays which are allocated and explicitly managed on module memory, you can achieve better performance when compared to the pure JavaScript implementations found in@stdlib/blas/base/zscal
. Beware that such performance gains may come at the cost of additional complexity when having to perform manual memory management. Choosing between implementations depends heavily on the particular needs and constraints of your application, with no one choice universally better than the other. zscal()
corresponds to the BLAS level 1 functionzscal
.
var hasWebAssemblySupport = require( '@stdlib/assert/has-wasm-support' );
var oneTo = require( '@stdlib/array/one-to' );
var Complex128 = require( '@stdlib/complex/float64/ctor' );
var Complex128Array = require( '@stdlib/array/complex128' );
var reinterpretComplex64 = require( '@stdlib/strided/base/reinterpret-complex128' );
var zscal = require( '@stdlib/blas/base/wasm/zscal' );
// Specify a vector length:
var N = 5;
// Create an input array:
var xbuf = oneTo( N*2, 'float64' );
var x = new Complex128Array( xbuf.buffer );
// Create a complex number:
var z = new Complex128( 2.0, 2.0 );
// Perform computation:
zscal.ndarray( N, z, x, 1, 0 );
// Print the results:
console.log( reinterpretComplex64( x, 0 ) );
// => <Float64Array>[ -2.0, 6.0, -2.0, 14.0, -2.0, 22.0, -2.0, 30.0, -2.0, 38.0 ]