-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgrid_traveller.py
137 lines (119 loc) · 4.11 KB
/
grid_traveller.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
"""
Problem Statement:
Say that you are a traveler on a 2D grid.
You begin in the top-left corner and your goal is to travel to the bottom-right corner. You may only move down or right.
You may only move down or right.
In how many ways can you travel to the goal on a grid with dimensions m*n?
"""
from functools import lru_cache, partial
from utils.decorators import time_this
import numpy as np
class GridTraveller:
def __init__(self, m, n):
self.solutions = {
"recursive": partial(self.recursive, m, n),
"dp_traverse_child": partial(self.dp_traverse_child, m, n),
"dp_reduce_grid": partial(self.dp_reduce_grid, m, n),
"dp_lru_cache": partial(self.dp_lru_cache, m, n),
"dp_tabulation": partial(self.dp_tabulation, m, n),
}
@staticmethod
def recursive(m, n):
"""
Time complexity: O(2^(n+m))
Space Complexity: O(n+m)
:param m:
:param n:
:return:
"""
if m == 1 and n == 1:
return 1
if m == 0 or n == 0:
return 0
return GridTraveller.recursive(m - 1, n) + GridTraveller.recursive(m, n - 1)
@staticmethod
def dp_traverse_child(m, n, current=None, grid_value=None):
start = [0, 0]
goal = [m - 1, n - 1]
actions = ('d', 'r')
if current is None:
current = start
grid_value = {}
if tuple(current) in grid_value.keys():
return grid_value[tuple(current)]
value = 0
if current == goal:
return 1
for action in actions:
if action == "d":
child = [current[0] + 1, current[1]]
else:
child = [current[0], current[1] + 1]
if child == goal:
return 1
if child[0] >= m or child[1] >= n:
continue
else:
value += GridTraveller.dp_traverse_child(m, n, child, grid_value)
grid_value[tuple(current)] = value
return grid_value[tuple(current)]
@staticmethod
def dp_reduce_grid(m, n, grid_value=None):
"""
grid_traveller(m,n) == grid_traveller(n,m) (Symmetric)
Time Complexity: O(nm)
Space Complexity: O(nm)
"""
if grid_value is None:
grid_value = {}
value = grid_value.get((m, n))
if value:
return value
value = grid_value.get((n, m))
if value:
return value
if m == 1 and n == 1:
grid_value[(m, n)] = 1
return 1
if m == 0 or n == 0:
grid_value[(m, n)] = 0
return 0
grid_value[(m, n)] = GridTraveller.dp_reduce_grid(m - 1, n, grid_value) + GridTraveller.dp_reduce_grid(m, n - 1, grid_value)
return grid_value[(m, n)]
@staticmethod
@lru_cache
def dp_lru_cache(m, n):
if m == 1 and n == 1:
return 1
if m == 0 or n == 0:
return 0
return GridTraveller.dp_lru_cache(min(m - 1, n), max(m - 1, n)) + \
GridTraveller.dp_lru_cache(min(m, n - 1), max(m, n - 1))
@staticmethod
def dp_tabulation(m, n, grid_value=None):
"""
grid_traveller(m,n) == grid_traveller(n,m) (Symmetric)
Time Complexity: O(nm)
Space Complexity: O(nm)
"""
grid_value_table = np.zeros((m + 1, n + 1), int)
grid_value_table[1][1] = 1
for i in range(m + 1):
for j in range(n + 1):
if i + 1 <= m:
grid_value_table[i + 1][j] += grid_value_table[i][j]
if j + 1 <= n:
grid_value_table[i][j + 1] += grid_value_table[i][j]
# print(grid_value_table)
return grid_value_table[m][n]
@staticmethod
@time_this()
def run(func):
print(f"Solution: {func()}")
def execute_all(self):
print("\nSolutions to Grid Traveller\n")
for name, solution in self.solutions.items():
print(f'Algo-Name: {name} {" -" * 90}')
self.run(solution)
print('-' * 100)
GridTraveller(10, 10).execute_all()