-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathbulkRNAana_2b_DEseq2.R
69 lines (50 loc) · 1.57 KB
/
bulkRNAana_2b_DEseq2.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# MESSAGE -----------------------------------------------------------------
#
# author: Yulin Lyu
# email: lvyulin@pku.edu.cn
#
# require: R whatever
#
# ---
# 1. Load packages --------------------------------------------------------
setwd("exampleData/RNA")
# grammar
library(tidyverse)
library(magrittr)
library(glue)
# analysis
library(DESeq2)
# for more information, please refer to:
# http://www.bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html
# 2. Load data ------------------------------------------------------------
dataMtx <- readRDS("mid/dataMtx.rds")
colnames(dataMtx)
usedMtx <- dataMtx[, c(
# c("wanted sample names"),
c(3, 6, 4, 5, 1, 2),
NULL
)]
# 3. Analyze --------------------------------------------------------------
se <- SummarizedExperiment(assays = list(counts = as.matrix(usedMtx)))
se$condition <- factor(
rep(c("Fib", "CiPS", "ES"), each = 2),
levels = c("Fib", "CiPS", "ES")
)
dds <- DESeqDataSet(se, design = ~ condition)
# filter genes with low expression level
rs <- rowMeans(usedMtx)
geneKeep <- rs > quantile(rs, 0.4)
sum(geneKeep)
dds <- dds[geneKeep, ]
# save vsd profile for visualization later
vsd <- vst(dds, blind = T)
saveRDS(vsd, "mid/vsd.rds")
# perform DEG test
dds <- DESeq(dds)
resultsNames(dds)
DEGres <- list()
DEGres$CiPS_vs_Fib <- lfcShrink(dds, coef = "condition_CiPS_vs_Fib", type = "apeglm")
DEGres$ES_vs_Fib <- lfcShrink(dds, coef = "condition_ES_vs_Fib", type = "apeglm")
saveRDS(DEGres, "mid/DEGres.rds")
iwalk(DEGres, ~ write.csv(.x, glue("mid/{.y}.DEG.csv")))
saveRDS(dds, "mid/dds.rds")