-
Notifications
You must be signed in to change notification settings - Fork 125
/
Copy pathgbq.py
859 lines (735 loc) · 30.6 KB
/
gbq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
# Copyright (c) 2017 pandas-gbq Authors All rights reserved.
# Use of this source code is governed by a BSD-style
# license that can be found in the LICENSE file.
import copy
from datetime import datetime
import logging
import re
import warnings
from pandas_gbq.contexts import Context # noqa - backward compatible export
from pandas_gbq.contexts import context
from pandas_gbq.exceptions import ( # noqa - backward compatible export
DatasetCreationError,
GenericGBQException,
InvalidColumnOrder,
InvalidIndexColumn,
NotFoundException,
TableCreationError,
)
from pandas_gbq.exceptions import InvalidPageToken # noqa - backward compatible export
from pandas_gbq.exceptions import InvalidSchema # noqa - backward compatible export
from pandas_gbq.exceptions import QueryTimeout # noqa - backward compatible export
from pandas_gbq.features import FEATURES
from pandas_gbq.gbq_connector import ( # noqa - backward compatible export
GbqConnector,
_bqschema_to_nullsafe_dtypes,
_finalize_dtypes,
create_user_agent,
)
from pandas_gbq.gbq_connector import _get_client # noqa - backward compatible export
import pandas_gbq.schema
import pandas_gbq.schema.pandas_to_bigquery
logger = logging.getLogger(__name__)
def _test_google_api_imports():
try:
import packaging # noqa
except ImportError as ex: # pragma: NO COVER
raise ImportError("pandas-gbq requires db-dtypes") from ex
try:
import db_dtypes # noqa
except ImportError as ex: # pragma: NO COVER
raise ImportError("pandas-gbq requires db-dtypes") from ex
try:
import pydata_google_auth # noqa
except ImportError as ex: # pragma: NO COVER
raise ImportError("pandas-gbq requires pydata-google-auth") from ex
try:
from google_auth_oauthlib.flow import InstalledAppFlow # noqa
except ImportError as ex: # pragma: NO COVER
raise ImportError("pandas-gbq requires google-auth-oauthlib") from ex
try:
import google.auth # noqa
except ImportError as ex: # pragma: NO COVER
raise ImportError("pandas-gbq requires google-auth") from ex
try:
from google.cloud import bigquery # noqa
except ImportError as ex: # pragma: NO COVER
raise ImportError("pandas-gbq requires google-cloud-bigquery") from ex
def _is_query(query_or_table: str) -> bool:
return re.search(r"\s", query_or_table.strip(), re.MULTILINE) is not None
def _transform_read_gbq_configuration(configuration):
"""
For backwards-compatibility, convert any previously client-side only
parameters such as timeoutMs to the property name expected by the REST API.
Makes a copy of configuration if changes are needed.
"""
if configuration is None:
return None
timeout_ms = configuration.get("query", {}).get("timeoutMs")
if timeout_ms is not None:
# Transform timeoutMs to an actual server-side configuration.
# https://github.com/googleapis/python-bigquery-pandas/issues/479
configuration = copy.deepcopy(configuration)
del configuration["query"]["timeoutMs"]
configuration["jobTimeoutMs"] = timeout_ms
return configuration
def read_gbq(
query_or_table,
project_id=None,
index_col=None,
columns=None,
reauth=False,
auth_local_webserver=True,
dialect=None,
location=None,
configuration=None,
credentials=None,
use_bqstorage_api=False,
max_results=None,
verbose=None,
private_key=None,
progress_bar_type="tqdm",
dtypes=None,
auth_redirect_uri=None,
client_id=None,
client_secret=None,
*,
col_order=None,
bigquery_client=None,
):
r"""Read data from Google BigQuery to a pandas DataFrame.
Run a SQL query in BigQuery or read directly from a table
the `Python client library for BigQuery
<https://cloud.google.com/python/docs/reference/bigquery/latest/index.html>`__
and for `BigQuery Storage
<https://cloud.google.com/python/docs/reference/bigquerystorage/latest>`__
to make API requests.
See the :ref:`How to authenticate with Google BigQuery <authentication>`
guide for authentication instructions.
.. note::
Consider using `BigQuery DataFrames
<https://cloud.google.com/bigquery/docs/dataframes-quickstart>`__ to
process large results with pandas compatible APIs that run in the
BigQuery SQL query engine. This provides an opportunity to save on
costs and improve performance.
Parameters
----------
query_or_table : str
SQL query to return data values. If the string is a table ID, fetch the
rows directly from the table without running a query.
project_id : str, optional
Google Cloud Platform project ID. Optional when available from
the environment.
index_col : str, optional
Name of result column to use for index in results DataFrame.
columns : list(str), optional
List of BigQuery column names in the desired order for results
DataFrame.
reauth : boolean, default False
Force Google BigQuery to re-authenticate the user. This is useful
if multiple accounts are used.
auth_local_webserver : bool, default True
Use the `local webserver flow
<https://googleapis.dev/python/google-auth-oauthlib/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_local_server>`_
instead of the `console flow
<https://googleapis.dev/python/google-auth-oauthlib/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_console>`_
when getting user credentials. Your code must run on the same machine
as your web browser and your web browser can access your application
via ``localhost:808X``.
.. versionadded:: 0.2.0
dialect : str, default 'standard'
Note: The default value changed to 'standard' in version 0.10.0.
SQL syntax dialect to use. Value can be one of:
``'legacy'``
Use BigQuery's legacy SQL dialect. For more information see
`BigQuery Legacy SQL Reference
<https://cloud.google.com/bigquery/docs/reference/legacy-sql>`__.
``'standard'``
Use BigQuery's standard SQL, which is
compliant with the SQL 2011 standard. For more information
see `BigQuery Standard SQL Reference
<https://cloud.google.com/bigquery/docs/reference/standard-sql/>`__.
location : str, optional
Location where the query job should run. See the `BigQuery locations
documentation
<https://cloud.google.com/bigquery/docs/dataset-locations>`__ for a
list of available locations. The location must match that of any
datasets used in the query.
.. versionadded:: 0.5.0
configuration : dict, optional
Query config parameters for job processing.
For example:
configuration = {'query': {'useQueryCache': False}}
For more information see `BigQuery REST API Reference
<https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.query>`__.
credentials : google.auth.credentials.Credentials, optional
Credentials for accessing Google APIs. Use this parameter to override
default credentials, such as to use Compute Engine
:class:`google.auth.compute_engine.Credentials` or Service Account
:class:`google.oauth2.service_account.Credentials` directly.
.. versionadded:: 0.8.0
use_bqstorage_api : bool, default False
Use the `BigQuery Storage API
<https://cloud.google.com/bigquery/docs/reference/storage/>`__ to
download query results quickly, but at an increased cost. To use this
API, first `enable it in the Cloud Console
<https://console.cloud.google.com/apis/library/bigquerystorage.googleapis.com>`__.
You must also have the `bigquery.readsessions.create
<https://cloud.google.com/bigquery/docs/access-control#roles>`__
permission on the project you are billing queries to.
This feature requires the ``google-cloud-bigquery-storage`` and
``pyarrow`` packages.
This value is ignored if ``max_results`` is set.
.. versionadded:: 0.10.0
max_results : int, optional
If set, limit the maximum number of rows to fetch from the query
results.
.. versionadded:: 0.12.0
progress_bar_type (Optional[str]):
If set, use the `tqdm <https://tqdm.github.io/>`__ library to
display a progress bar while the data downloads. Install the
``tqdm`` package to use this feature.
Possible values of ``progress_bar_type`` include:
``None``
No progress bar.
``'tqdm'``
Use the :func:`tqdm.tqdm` function to print a progress bar
to :data:`sys.stderr`.
``'tqdm_notebook'``
Use the :func:`tqdm.tqdm_notebook` function to display a
progress bar as a Jupyter notebook widget.
``'tqdm_gui'``
Use the :func:`tqdm.tqdm_gui` function to display a
progress bar as a graphical dialog box.
dtypes : dict, optional
A dictionary of column names to pandas ``dtype``. The provided
``dtype`` is used when constructing the series for the column
specified. Otherwise, a default ``dtype`` is used.
verbose : None, deprecated
Deprecated in Pandas-GBQ 0.4.0. Use the `logging module
to adjust verbosity instead
<https://pandas-gbq.readthedocs.io/en/latest/intro.html#logging>`__.
private_key : str, deprecated
Deprecated in pandas-gbq version 0.8.0. Use the ``credentials``
parameter and
:func:`google.oauth2.service_account.Credentials.from_service_account_info`
or
:func:`google.oauth2.service_account.Credentials.from_service_account_file`
instead.
auth_redirect_uri : str
Path to the authentication page for organization-specific authentication
workflows. Used when ``auth_local_webserver=False``.
client_id : str
The Client ID for the Google Cloud Project the user is attempting to
connect to.
client_secret : str
The Client Secret associated with the Client ID for the Google Cloud Project
the user is attempting to connect to.
col_order : list(str), optional
Alias for columns, retained for backwards compatibility.
bigquery_client : google.cloud.bigquery.Client, optional
A Google Cloud BigQuery Python Client instance. If provided, it will be used for reading
data, while the project and credentials parameters will be ignored.
Returns
-------
df: DataFrame
DataFrame representing results of query.
"""
if dialect is None:
dialect = context.dialect
if dialect is None:
dialect = "standard"
_test_google_api_imports()
if verbose is not None and FEATURES.pandas_has_deprecated_verbose:
warnings.warn(
"verbose is deprecated and will be removed in "
"a future version. Set logging level in order to vary "
"verbosity",
FutureWarning,
stacklevel=2,
)
if dialect not in ("legacy", "standard"):
raise ValueError("'{0}' is not valid for dialect".format(dialect))
configuration = _transform_read_gbq_configuration(configuration)
if configuration and "query" in configuration and "query" in configuration["query"]:
if query_or_table is not None:
raise ValueError(
"Query statement can't be specified "
"inside config while it is specified "
"as parameter"
)
query_or_table = configuration["query"].pop("query")
connector = GbqConnector(
project_id,
reauth=reauth,
dialect=dialect,
auth_local_webserver=auth_local_webserver,
location=location,
credentials=credentials,
private_key=private_key,
use_bqstorage_api=use_bqstorage_api,
auth_redirect_uri=auth_redirect_uri,
client_id=client_id,
client_secret=client_secret,
bigquery_client=bigquery_client,
)
if _is_query(query_or_table):
final_df = connector.run_query(
query_or_table,
configuration=configuration,
max_results=max_results,
progress_bar_type=progress_bar_type,
dtypes=dtypes,
)
else:
final_df = connector.download_table(
query_or_table,
max_results=max_results,
progress_bar_type=progress_bar_type,
dtypes=dtypes,
)
# Reindex the DataFrame on the provided column
if index_col is not None:
if index_col in final_df.columns:
final_df.set_index(index_col, inplace=True)
else:
raise InvalidIndexColumn(
'Index column "{0}" does not exist in DataFrame.'.format(index_col)
)
# Using columns as an alias for col_order, raising an error if both provided
if col_order and not columns:
columns = col_order
elif col_order and columns:
raise ValueError(
"Must specify either columns (preferred) or col_order, not both"
)
# Change the order of columns in the DataFrame based on provided list
# TODO(kiraksi): allow columns to be a subset of all columns in the table, with follow up PR
if columns is not None:
if sorted(columns) == sorted(final_df.columns):
final_df = final_df[columns]
else:
raise InvalidColumnOrder("Column order does not match this DataFrame.")
connector.log_elapsed_seconds(
"Total time taken",
datetime.now().strftime("s.\nFinished at %Y-%m-%d %H:%M:%S."),
)
return final_df
def to_gbq(
dataframe,
destination_table,
project_id=None,
chunksize=None,
reauth=False,
if_exists="fail",
auth_local_webserver=True,
table_schema=None,
location=None,
progress_bar=True,
credentials=None,
api_method: str = "default",
verbose=None,
private_key=None,
auth_redirect_uri=None,
client_id=None,
client_secret=None,
user_agent=None,
rfc9110_delimiter=False,
bigquery_client=None,
):
"""Write a DataFrame to a Google BigQuery table.
The main method a user calls to export pandas DataFrame contents to Google BigQuery table.
This method uses the Google Cloud client library to make requests to Google BigQuery, documented `here
<https://googleapis.dev/python/bigquery/latest/index.html>`__.
See the :ref:`How to authenticate with Google BigQuery <authentication>`
guide for authentication instructions.
Parameters
----------
dataframe : pandas.DataFrame
DataFrame to be written to a Google BigQuery table.
destination_table : str
Name of table to be written, in the form ``dataset.tablename`` or
``project.dataset.tablename``.
project_id : str, optional
Google Cloud Platform project ID. Optional when available from
the environment.
chunksize : int, optional
Number of rows to be inserted in each chunk from the dataframe.
Set to ``None`` to load the whole dataframe at once.
reauth : bool, default False
Force Google BigQuery to re-authenticate the user. This is useful
if multiple accounts are used.
if_exists : str, default 'fail'
Behavior when the destination table exists. Value can be one of:
``'fail'``
If table exists, do nothing.
``'replace'``
If table exists, drop it, recreate it, and insert data.
``'append'``
If table exists, insert data. Create if does not exist.
auth_local_webserver : bool, default True
Use the `local webserver flow
<https://googleapis.dev/python/google-auth-oauthlib/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_local_server>`_
instead of the `console flow
<https://googleapis.dev/python/google-auth-oauthlib/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_console>`_
when getting user credentials. Your code must run on the same machine
as your web browser and your web browser can access your application
via ``localhost:808X``.
.. versionadded:: 0.2.0
table_schema : list of dicts, optional
List of BigQuery table fields to which according DataFrame
columns conform to, e.g. ``[{'name': 'col1', 'type':
'STRING'},...]``. The ``type`` values must be BigQuery type names.
- If ``table_schema`` is provided, it may contain all or a subset of
DataFrame columns. If a subset is provided, the rest will be
inferred from the DataFrame dtypes. If ``table_schema`` contains
columns not in the DataFrame, they'll be ignored.
- If ``table_schema`` is **not** provided, it will be
generated according to dtypes of DataFrame columns. See
`Inferring the Table Schema
<https://pandas-gbq.readthedocs.io/en/latest/writing.html#writing-schema>`__.
for a description of the schema inference.
See `BigQuery API documentation on valid column names
<https://cloud.google.com/bigquery/docs/schemas#column_names`>__.
.. versionadded:: 0.3.1
location : str, optional
Location where the load job should run. See the `BigQuery locations
documentation
<https://cloud.google.com/bigquery/docs/dataset-locations>`__ for a
list of available locations. The location must match that of the
target dataset.
.. versionadded:: 0.5.0
progress_bar : bool, default True
Use the library `tqdm` to show the progress bar for the upload,
chunk by chunk.
.. versionadded:: 0.5.0
credentials : google.auth.credentials.Credentials, optional
Credentials for accessing Google APIs. Use this parameter to override
default credentials, such as to use Compute Engine
:class:`google.auth.compute_engine.Credentials` or Service Account
:class:`google.oauth2.service_account.Credentials` directly.
.. versionadded:: 0.8.0
api_method : str, optional
API method used to upload DataFrame to BigQuery. One of "load_parquet",
"load_csv". Default "load_parquet" if pandas is version 1.1.0+,
otherwise "load_csv".
.. versionadded:: 0.16.0
verbose : bool, deprecated
Deprecated in Pandas-GBQ 0.4.0. Use the `logging module
to adjust verbosity instead
<https://pandas-gbq.readthedocs.io/en/latest/intro.html#logging>`__.
private_key : str, deprecated
Deprecated in pandas-gbq version 0.8.0. Use the ``credentials``
parameter and
:func:`google.oauth2.service_account.Credentials.from_service_account_info`
or
:func:`google.oauth2.service_account.Credentials.from_service_account_file`
instead.
auth_redirect_uri : str
Path to the authentication page for organization-specific authentication
workflows. Used when ``auth_local_webserver=False``.
client_id : str
The Client ID for the Google Cloud Project the user is attempting to
connect to.
client_secret : str
The Client Secret associated with the Client ID for the Google Cloud Project
the user is attempting to connect to.
user_agent : str
Custom user agent string used as a prefix to the pandas version.
rfc9110_delimiter : bool
Sets user agent delimiter to a hyphen or a slash.
Default is False, meaning a hyphen will be used.
bigquery_client : google.cloud.bigquery.Client, optional
A Google Cloud BigQuery Python Client instance. If provided, it will be used for reading
data, while the project, user_agent, and credentials parameters will be ignored.
.. versionadded:: 0.23.3
"""
# If we get a bigframes.pandas.DataFrame object, it may be possible to use
# the code paths here, but it could potentially be quite expensive because
# of the queries involved in type detection. It would be safer just to
# fail early if there are bigframes-y methods available.
# https://github.com/googleapis/python-bigquery-pandas/issues/824
if hasattr(dataframe, "to_pandas") and hasattr(dataframe, "to_gbq"):
raise TypeError(f"Expected a pandas.DataFrame, but got {repr(type(dataframe))}")
_test_google_api_imports()
from google.api_core import exceptions as google_exceptions
from google.cloud import bigquery
if verbose is not None and FEATURES.pandas_has_deprecated_verbose:
warnings.warn(
"verbose is deprecated and will be removed in "
"a future version. Set logging level in order to vary "
"verbosity",
FutureWarning,
stacklevel=1,
)
if api_method == "default":
api_method = "load_parquet"
if chunksize is not None:
if api_method == "load_parquet":
warnings.warn(
"chunksize is ignored when using api_method='load_parquet'",
DeprecationWarning,
stacklevel=2,
)
else:
warnings.warn(
"chunksize will be ignored when using api_method='load_csv' in a future version of pandas-gbq",
PendingDeprecationWarning,
stacklevel=2,
)
if "." not in destination_table:
raise NotFoundException(
"Invalid Table Name. Should be of the form 'datasetId.tableId' or "
"'projectId.datasetId.tableId'"
)
if if_exists not in ("fail", "replace", "append"):
raise ValueError("'{0}' is not valid for if_exists".format(if_exists))
if_exists_list = ["fail", "replace", "append"]
dispositions = ["WRITE_EMPTY", "WRITE_TRUNCATE", "WRITE_APPEND"]
dispositions_dict = dict(zip(if_exists_list, dispositions))
write_disposition = dispositions_dict[if_exists]
connector = GbqConnector(
project_id,
reauth=reauth,
auth_local_webserver=auth_local_webserver,
location=location,
credentials=credentials,
private_key=private_key,
auth_redirect_uri=auth_redirect_uri,
client_id=client_id,
client_secret=client_secret,
user_agent=user_agent,
rfc9110_delimiter=rfc9110_delimiter,
bigquery_client=bigquery_client,
)
bqclient = connector.client
destination_table_ref = bigquery.table.TableReference.from_string(
destination_table, default_project=connector.project_id
)
project_id_table = destination_table_ref.project
dataset_id = destination_table_ref.dataset_id
table_id = destination_table_ref.table_id
default_schema = _generate_bq_schema(dataframe)
# If table_schema isn't provided, we'll create one for you
if not table_schema:
table_schema = default_schema
# It table_schema is provided, we'll update the default_schema to the provided table_schema
else:
table_schema = pandas_gbq.schema.update_schema(
default_schema, dict(fields=table_schema)
)
try:
# Try to get the table
table = bqclient.get_table(destination_table_ref)
except google_exceptions.NotFound:
# If the table doesn't already exist, create it
table_connector = _Table(
project_id_table,
dataset_id,
location=location,
credentials=connector.credentials,
)
table_connector.create(table_id, table_schema)
else:
if if_exists == "append":
# Convert original schema (the schema that already exists) to pandas-gbq API format
original_schema = pandas_gbq.schema.to_pandas_gbq(table.schema)
# Update the local `table_schema` so mode (NULLABLE/REQUIRED)
# matches. See: https://github.com/pydata/pandas-gbq/issues/315
table_schema = pandas_gbq.schema.update_schema(
table_schema, original_schema
)
if dataframe.empty:
# Create the table (if needed), but don't try to run a load job with an
# empty file. See: https://github.com/pydata/pandas-gbq/issues/237
return
connector.load_data(
dataframe,
destination_table_ref,
write_disposition=write_disposition,
chunksize=chunksize,
schema=table_schema,
progress_bar=progress_bar,
api_method=api_method,
billing_project=project_id,
)
def generate_bq_schema(df, default_type="STRING"):
"""DEPRECATED: Given a passed df, generate the associated Google BigQuery
schema.
Parameters
----------
df : DataFrame
default_type : string
The default big query type in case the type of the column
does not exist in the schema.
"""
# deprecation TimeSeries, #11121
warnings.warn(
"generate_bq_schema is deprecated and will be removed in " "a future version",
FutureWarning,
stacklevel=2,
)
return _generate_bq_schema(df, default_type=default_type)
def _generate_bq_schema(df, default_type="STRING"):
"""DEPRECATED: Given a dataframe, generate a Google BigQuery schema.
This is a private method, but was used in external code to work around
issues in the default schema generation. Now that individual columns can
be overridden: https://github.com/pydata/pandas-gbq/issues/218, this
method can be removed after there is time to migrate away from this
method."""
fields = pandas_gbq.schema.pandas_to_bigquery.dataframe_to_bigquery_fields(
df,
default_type=default_type,
)
fields_json = []
for field in fields:
fields_json.append(field.to_api_repr())
return {"fields": fields_json}
class _Table(GbqConnector):
def __init__(
self,
project_id,
dataset_id,
reauth=False,
location=None,
credentials=None,
private_key=None,
):
self.dataset_id = dataset_id
super(_Table, self).__init__(
project_id,
reauth,
location=location,
credentials=credentials,
private_key=private_key,
)
def _table_ref(self, table_id):
"""Return a BigQuery client library table reference"""
from google.cloud.bigquery import DatasetReference, TableReference
return TableReference(
DatasetReference(self.project_id, self.dataset_id), table_id
)
def exists(self, table_id):
"""Check if a table exists in Google BigQuery
Parameters
----------
table : str
Name of table to be verified
Returns
-------
boolean
true if table exists, otherwise false
"""
from google.api_core.exceptions import NotFound
table_ref = self._table_ref(table_id)
try:
self.client.get_table(table_ref)
return True
except NotFound:
return False
except self.http_error as ex:
self.process_http_error(ex)
def create(self, table_id, schema):
"""Create a table in Google BigQuery given a table and schema
Parameters
----------
table : str
Name of table to be written
schema : str
Use the generate_bq_schema to generate your table schema from a
dataframe.
"""
from google.cloud.bigquery import DatasetReference, Table, TableReference
if self.exists(table_id):
raise TableCreationError("Table {0} already exists".format(table_id))
if not _Dataset(self.project_id, credentials=self.credentials).exists(
self.dataset_id
):
_Dataset(
self.project_id,
credentials=self.credentials,
location=self.location,
).create(self.dataset_id)
table_ref = TableReference(
DatasetReference(self.project_id, self.dataset_id), table_id
)
table = Table(table_ref)
table.schema = pandas_gbq.schema.to_google_cloud_bigquery(schema)
try:
self.client.create_table(table)
except self.http_error as ex:
self.process_http_error(ex)
def delete(self, table_id):
"""Delete a table in Google BigQuery
Parameters
----------
table : str
Name of table to be deleted
"""
from google.api_core.exceptions import NotFound
table_ref = self._table_ref(table_id)
try:
self.client.delete_table(table_ref)
except NotFound:
# Ignore 404 error which may occur if table already deleted
pass
except self.http_error as ex:
self.process_http_error(ex)
class _Dataset(GbqConnector):
def __init__(
self,
project_id,
reauth=False,
location=None,
credentials=None,
private_key=None,
):
super(_Dataset, self).__init__(
project_id,
reauth,
credentials=credentials,
location=location,
private_key=private_key,
)
def _dataset_ref(self, dataset_id):
"""Return a BigQuery client library dataset reference"""
from google.cloud.bigquery import DatasetReference
return DatasetReference(self.project_id, dataset_id)
def exists(self, dataset_id):
"""Check if a dataset exists in Google BigQuery
Parameters
----------
dataset_id : str
Name of dataset to be verified
Returns
-------
boolean
true if dataset exists, otherwise false
"""
from google.api_core.exceptions import NotFound
try:
self.client.get_dataset(self._dataset_ref(dataset_id))
return True
except NotFound:
return False
except self.http_error as ex:
self.process_http_error(ex)
def create(self, dataset_id):
"""Create a dataset in Google BigQuery
Parameters
----------
dataset : str
Name of dataset to be written
"""
from google.cloud.bigquery import Dataset
if self.exists(dataset_id):
raise DatasetCreationError(
"Dataset {0} already " "exists".format(dataset_id)
)
dataset = Dataset(self._dataset_ref(dataset_id))
if self.location is not None:
dataset.location = self.location
try:
self.client.create_dataset(dataset)
except self.http_error as ex:
self.process_http_error(ex)