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Preface to the First Reprinting

Well, what a year it’s been! Interest inLearn Prolog Now! continues
to grow. College Publications brought out the first paperback edition
in June 2006, and since then the number of hits on the website
(www.learnprolognow.org) has increased steadily. The most dramatic
month was May 2007 when we had 6,322 unique visitors; a reader
submitted the LPN! link to Reddit (http://programming.reddit.com)
and for a heady moment we felt a bit like Smosh!

We’ve also been pleased by the emails we continue to get from
students and instructors using the material. Some point outtypos, others
tell us of their experiences in teaching or learning with thebook, and a
pleasing number simply want to say “Thank you!”. All in all, it was fast
becoming clear that it was about time for a first (corrected) reprinting.

But what really made us get down to work was the sudden appearance
of a French translation. Hélène Manuélian, who began translating LPN!
shortly after its appearance in paperback, finished earlierthan anticipated
— so suddenly we hadProlog Tout de Suite !on our hands too! This
inspired us all to get down to the task of correcting and improving the
English version.

So, here it is again, all squeaky clean. Once again, if you like the
website, we hope you like the (new!) paperback even more. And, as
usual, we wish you every success in your endeavours to Learn Prolog
Now!

Acknowledgments

Once again we’re in debt to many people: everyone who gave us
feedback on the first printing and the website, and (as ever) to the
indefatigable Jane Spurr. However this time we owe a particularly
deep debt to Sébastien Hinderer, Eric Kow, Matthieu Quignard, and (of
course) Hélène Manuélian. Their work onProlog Tout de Suite !, not
only created a beautiful translation, it also helped us withthe present
volume. Warmest thanks to all.
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Preface

Learn Prolog Now! has a long and twisted history. In 1995, all three
authors were based at the Department of Computational Linguistics, at
the University of the Saarland, in Saarbrücken, Germany. Johan, who
was teaching the introduction to Prolog that year, was working with
Patrick on a Prolog-based introduction to natural languagesemantics.1

He decided to prepare a short set of lecture notes on Prolog which
could also be used as an Appendix to the computational semantics book.

Nice idea, but that’s not the way things worked out. First, between
1996 and 2000, Patrick and Johan rethought the structure of the Prolog
courses, and along the way the notes became book-sized. Then, from
2001 till 2004, Kristina took over the teaching, added new material and
(most importantly of all) turnedLearn Prolog Now! into a web-book.

It quickly became apparent that we had a hit on our hands: the
website got up to 4,000 visitors a month, and we received manyemails.
Actually, this put us in a bit of a quandary. We wanted to publish
Learn Prolog Now! as a (low-budget) book — but at the same time we
did not want a publisher telling us that we had to get rid of the free
online version.

Luckily, Vincent Hendricks came to the rescue (thanks Vincent!). He
told us about College Publications, Dov Gabbay’s new publication house,
which was specifically designed to enable authors to retain copyright. It
was a marriage made in heaven. Thanks to College Publications we
could makeLearn Prolog Now! available in book form at a reasonable
price, and keep the web-book in place.

And that’s the book you’re now reading. It has been thoroughly
tested, first on nearly a decade’s worth of students at Saarbrücken, and at
the 16th European Summer School in Logic, Language and Information
which took place in Nancy, France, in August 2004, where Kristina
taught a hands-on introduction to Prolog. Though, as we hopeyou will
swiftly discover, you don’t need to be doing a course to follow this
book. We’ve tried to makeLearn Prolog Now! self-contained and easy

1Representation and Inference for Natural Language: A FirstCourse in Computational
Semantics, Patrick Blackburn and Johan Bos, CSLI Publications, 2005.
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to follow, so that it can be used without a teacher. And as the feedback
we have received confirms, this is one of the most popular waysof
using it.

So — over to you. We had a lot of fun writing this. We hope you
have a lot of fun reading it, and that it really will help you tolearn
Prolog now!

Acknowledgments

Over the years thatLearn Prolog Now! existed as course notes and
web-book, we received many emails, ranging from helpful comments to
requests for answers to problems (a handful of which verged on demands
that we do their homework assignments!). We can’t thank everyone by
name, but we did receive a lot of useful feedback this way and are very
grateful. And if we did any homework assignments, we ain’t telling. . .

We are extremely grateful to Gertjan van Noord and Robbert Prins,
who used early versions ofLearn Prolog Now! in their teaching at the
University of Groningen. They gave us detailed feedback on its weak
points, and we’ve tried to take their advice into account; wehope we’ve
succeeded. We’d also like to sayGrazie! to Malvina Nissim, who
supplied us with an upgrade of Exercise 2.4, helped format the final
hardcopy version, and generally gave us her enthusiastic support over
many years.

Some special thanks are in order. First, we’d like to thank Dov
Gabbay for founding College Publications; may it do for academic
publishing what the GNU Public License did for software! Second,
heartfelt thanks to Jane Spurr; we’venever had a more helpful,
competent, or enthusiastic editor, andnobody reacts faster than Jane.
Thirdly, we like to thank Jan Wielemaker (the Linus Torvaldsof the
Prolog world) for making SWI Prolog freely available over the internet.
SWI Prolog is a an ISO-compliant Free Software Prolog environment,
licensed under the Lesser GNU Public License. We don’t know what
we’d have done without it. We’re also very grateful to him forthe
speedy and informative feedback he gave us on a number of technical
issues, and for encouraging us to go for ISO-standard Prolog. Finally, a
big thank you to Ian Mackie and an anonymous referee for all the time
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Patrick Blackburn
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Introduction

First off, what is Prolog? It’s a programming language, but arather
unusual one. “Prolog” is short for “Programming with Logic”, and though
the link between logic and Prolog is not completely straightforward, it is
this link that gives Prolog its special character. At the heart of Prolog
lies a beautiful idea: don’t tell the computer what to do, simply describe
situations of interest. Where does the computation come in?When we
ask questions. Prolog enables the computer to logically deduce new facts
about the situations we describe, and gives its deductions back to us as
answers.

This has a number of consequences. First, a practical one: ifyou are
an experienced programmer, Prolog is likely to take you by surprise. It
requires a different mindset. You have to learn to see computational
problems from a different perspective. To use the standard terminology,
you have to learn to thinkdeclaratively, rather thanprocedurally. This
can be challenging, but it’s also a lot of fun.

A second consequence of Prolog’s “say what the problemis, rather
than how to solve it” stance is that Prolog is a very high-level language.
As will become apparent, Prolog enables you to describe somehighly
abstract things (for example, the syntactic structure of English) extremely
succinctly. Moreover, these descriptions really are programs: they will
do real work for us if we ask the right questions. For example,having
described the syntactic structure of English, we can ask Prolog whether
particular sentences are grammatical or not. Prolog will tell us, and if
we ask the right question, will even give us a grammatical analysis.

Prolog’s ability to describe complex situations succinctly means that it
is good for rapid prototyping. That is, if you have a good idea, and
want to get a working program that embodies it, Prolog is often an
excellent choice. Ideas become computational reality fastwith Prolog, at
least for some applications. Which applications? Those which depend
on getting to grips with rich structure. Prolog applicationareas include
computational linguistics (or natural languages processing as it is often
called), Artificial Intelligence (AI), expert systems, molecular biology,
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and the semantic web. Where there is structure to be described, or
knowledge to be represented, Prolog is likely to come into its own.

Prolog is not a perfect language, and it’s not suitable for everything.
If you need to do serious text manipulation, go for Perl. If you need
tight control over memory, go for C. If you want a mathematically
elegant language that you can reason about easily, go for Caml, Haskell,
or a clean Lisp dialect (such as Scheme). But no language is good for
everything, and those that try (remember Ada?) often fall bythe wayside.
As we have just said, Prolog is a natural choice for knowledge-rich
tasks, and there are a number of good reasons for learning it.If
you are an experienced programmer, we think you will enjoy learning
Prolog simply because it is so different; thinking declaratively, or almost
declaratively, can send your brain in interesting new directions. And if
you have little or no programing experience, and maybe aren’t even
sure if you like computers or not, then there are excellent reasons for
choosing Prolog as your first language. Because it is so high-level, you
get to do interesting things fast, without getting bogged down in tedious
preparatory work. Moreover, you will swiftly learn about a number of
fundamental programming concepts, notably recursion and recursive data
structures, concepts that will be useful if you later study other languages.
Finally, the link with logic adds an intriguing intellectual dimension to
the learning process.

Where does Prolog come from? It originated in Marseilles, inthe
south of France. Alain Colmerauer and Philippe Roussel devised and
implemented the first Prolog interpreter in 1972. One of the earliest
versions was partially implemented in Fortran, and partially in Prolog
itself. An interesting mixture: it would be hard to find two languages
that differ more widely than the numerically oriented, non-recursive,
imperative scientific programming language Fortran, and the symbolically
oriented, recursive, declarative Prolog. A few years later, Robert
Kowalski, who had worked with the Marseilles team in 1971 and1972,
published his bookLogic for Problem Solving1 which put the idea of
logic programming firmly on the intellectual agenda. Another big step
was taken in Edinburgh in 1977 with David Warren’s implementation of
the DEC 10 compiler.2 This implementation, which could compete with
(and sometimes surpass) state of the art Lisp implementations in terms
of efficiency, turned Prolog from an academic curiosity intoa serious
programming language. Interesting work soon followed. Forexample,

1Logic for Problem Solving, R. Kowalski, Elsevier/North-Holland, 1979.
2David H. D. Warren, Applied Logic — Its Use and Implementation as a

Programming Tool, PhD thesis, University of Edinburgh. Scotland, 1977.
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in a classic paper, Pereira and Warren showed that Prolog’s built-in
mechanism for handling Definite Clause Grammars (DCGs) was anatural
way of treating certain tasks in natural language processing.3

Since then, Prolog has grown in popularity, particularly inEurope and
Japan (in the United States, work on AI has tended to be Lisp-based).
Prolog is, was, and always will be, a niche language. But the niche it
occupies is fascinating.

How to get the most out of this book

What we have said about Prolog so far has been high-level and abstract.
We are now going to change gears. The approach taken to teaching
Prolog in this book is not abstract, and is certainlynot driven by
high-level ideas (such as the link with logic). In fact, it’sresolutely
down to earth. We try to teach Prolog as concretely as possible. We’ve
just told you why Prolog is not just another programming language, but
we’re going to teach it as if it was.

Why? Quite simply, because we think that’s the best approachfor
a first course. Programming in Prolog is a practical skill. There are
concrete things that simply have to be learned, and we strongly believe
that you just have to get in there and learn them as fast as possible.
This does not mean that we find the abstract side of Prolog (andmore
generally, logic programming) unimportant or uninteresting. However
(unless you already have a good theoretical background) these deeper
ideas take time to emerge clearly and be absorbed. In the meantime,
you should be getting on with mastering the nuts and bolts.

To put it another way, we think that learning a programming language
(any programming language, not just Prolog) is a lot like learning a
foreign language. And what is the most important part of learning a
foreign language? Actuallyusing it, actually putting it to work, actually
trying it out. Sure, reflecting on the beauty of the language is pleasant,
but at the end of the day, what really counts is the time you spend on
mastering the mechanics.

This attitude has strongly influenced the wayLearn Prolog Now! is
written. In particular, as you will see, each chapter is divided into three
parts. First comes the text. Next come a number of exercises.Finally
there is what we call the practical session. Now, we cannot emphasise
the following point too strongly: the practical sessions are the most
important part of the book. It is utterly imperative that you sit down,

3“Definite clause grammars for language analysis — a survey ofthe formalism and
a comparison with augmented transition networks”, F. Pereira and D. H. D. Warren,
Journal of Artificial Intelligence, 13(3):231–278, 1980.
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fire up a Prolog interpreter, and work through these sessions. Actually,
just doing that is nowhere near enough. If you really want to master
Prolog, you need to try out a lot more than is asked of you in these
sessions. But we believe these sessions contain enough to put you on
the right track.

Gaining practical experience with a programming language is always
important, but, in our opinion, it is even more important than usual with
Prolog. Why? Because Prolog is deceptively easy to understand. It’s a
small language (there are not a lot of constructs to learn) and the basic
ideas are beautiful in their simplicity. It is dangerously easy to smile,
relax, and say “‘Hey! I get it!”. Easy, but wrong. The basic ideas
interact in subtle ways, and withoutlots of practical experience you will
be lost. We have had many (very bright) students who thought they
understood it, didn’t put in the effort on the practical side— and who
later found themselves scrambling to keep up. Prolog is subtle. You
need to put in the hours if you want to master it.

Summing up,Learn Prolog Nowis a practically oriented introduction
to the central features of Prolog. It won’t teach you everything, but if
you make it to the end you’ll have a good grasp of the basics, and will
have caught a glimpse of what logic programming is about. Enjoy!



Chapter 1

Facts, Rules, and Queries

This chapter has two main goals:

1. To give some simple examples of Prolog
programs. This will introduce us to the three
basic constructs in Prolog: facts, rules, and
queries. It will also introduce us to a number
of other themes, like the role of logic in
Prolog, and the idea of performing unification
with the aid of variables.

2. To begin the systematic study of Prolog by
defining terms, atoms, variables and other
syntactic concepts.
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1 Some Simple Examples
There are only three basic constructs in Prolog: facts, rules, and queries.
A collection of facts and rules is called a knowledge base (ora database)
and Prolog programming is all about writing knowledge bases. That
is, Prolog programs simplyare knowledge bases, collections of facts
and rules which describe some collection of relationships that we find
interesting.

So how do weuse a Prolog program? By posing queries. That is, by
asking questions about the information stored in the knowledge base.

Now this probably sounds rather strange. It’s certainly notobvious that
it has much to do with programming at all. After all, isn’t programming
all about telling a computer what to do? But as we shall see, the
Prolog way of programming makes a lot of sense, at least for certain
tasks; for example, it is useful in computational linguistics and Artificial
Intelligence (AI). But instead of saying more about Prolog in general
terms, let’s jump right in and start writing some simple knowledge bases;
this is not just the best way of learning Prolog, it’s the onlyway.

Knowledge Base 1

Knowledge Base 1 (KB1) is simply a collection of facts. Factsare used
to state things that areunconditionally true of some situation of interest.
For example, we can state that Mia, Jody, and Yolanda are women,
that Jody plays air guitar, and that a party is taking place, using the
following five facts:

woman(mia).

woman(jody).

woman(yolanda).

playsAirGuitar(jody).

party.

This collection of facts is KB1. It is our first example of a Prolog
program. Note that the namesmia, jody, and yolanda, the properties
woman and playsAirGuitar, and the propositionparty have been
written so that the first letter is in lower-case. This is important; we
will see why a little later on.

How can we use KB1? By posing queries. That is, by asking
questions about the information KB1 contains. Here are someexamples.
We can ask Prolog whether Mia is a woman by posing the query:

?- woman(mia).

Prolog will answer
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yes

for the obvious reason that this is one of the facts explicitly recorded in
KB1. Incidentally, we don’t type in the?-. This symbol (or something
like it, depending on the implementation of Prolog you are using) is the
prompt symbol that the Prolog interpreter displays when it is waiting
to evaluate a query. We just type in the actual query (for example
woman(mia)) followed by . (a full stop). The full stop is important. If
you don’t type it, Prolog won’t start working on the query.

Similarly, we can ask whether Jody plays air guitar by posingthe
following query:

?- playsAirGuitar(jody).

Prolog will again answer yes, because this is one of the factsin KB1.
However, suppose we ask whether Mia plays air guitar:

?- playsAirGuitar(mia).

We will get the answer

no

Why? Well, first of all, this is not a fact in KB1. Moreover, KB1is
extremely simple, and contains no other information (such as the rules
we will learn about shortly) which might help Prolog try to infer (that
is, deduce) whether Mia plays air guitar. So Prolog correctly concludes
that playsAirGuitar(mia) does not follow from KB1.

Here are two important examples. First, suppose we pose the query:

?- playsAirGuitar(vincent).

Again Prolog answers no. Why? Well, this query is about a person
(Vincent) that it has no information about, so it (correctly) concludes that
playsAirGuitar(vincent) cannot be deduced from the information in
KB1.

Similarly, suppose we pose the query:

?- tatooed(jody).

Again Prolog will answer no. Why? Well, this query is about a
property (being tatooed) that it has no information about, so once again
it (correctly) concludes that the query cannot be deduced from the
information in KB1. (Actually, some Prolog implementations will respond
to this query with an error message, telling you that the predicate or
proceduretatooed is not defined; we will soon introduce the notion of
predicates.)
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Needless to say, we can also make queries concerning propositions.
For example, if we pose the query

?- party.

then Prolog will respond

yes

and if we pose the query

?- rockConcert.

then Prolog will respond

no

exactly as we would expect.

Knowledge Base 2

Here is KB2, our second knowledge base:

happy(yolanda).

listens2Music(mia).

listens2Music(yolanda):- happy(yolanda).

playsAirGuitar(mia):- listens2Music(mia).

playsAirGuitar(yolanda):- listens2Music(yolanda).

There are two facts in KB2,listens2Music(mia) andhappy(yolanda).
The last three items it contains are rules.

Rules state information that isconditionally true of the situation of
interest. For example, the first rule says that Yolanda listens to music
if she is happy, and the last rule says that Yolanda plays air guitar if
she listens to music. More generally, the:- should be read as “if”, or
“is implied by”. The part on the left hand side of the:- is called the
head of the rule, the part on the right hand side is called the body. So
in general rules say:if the body of the rule is true,then the head of
the rule is true too. And now for the key point:

If a knowledge base contains a rulehead :- body, and
Prolog knows thatbody follows from the information in the
knowledge base, then Prolog can inferhead.

This fundamental deduction step is called modus ponens.
Let’s consider an example. Suppose we ask whether Mia plays air

guitar:
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?- playsAirGuitar(mia).

Prolog will respond yes. Why? Well, although it can’t find
playsAirGuitar(mia) as a fact explicitly recorded in KB2, it can find
the rule

playsAirGuitar(mia):- listens2Music(mia).

Moreover, KB2 also contains the factlistens2Music(mia). Hence Prolog
can use the rule of modus ponens to deduce thatplaysAirGuitar(mia).

Our next example shows that Prolog can chain together uses ofmodus
ponens. Suppose we ask:

?- playsAirGuitar(yolanda).

Prolog would respond yes. Why? Well, first of all, by using thefact
happy(yolanda) and the rule

listens2Music(yolanda):- happy(yolanda).

Prolog can deduce the new factlistens2Music(yolanda). This new
fact is not explicitly recorded in the knowledge base — it is only
implicitly present (it is inferred knowledge). Nonetheless, Prolog can
then use it just like an explicitly recorded fact. In particular, from this
inferred fact and the rule

playsAirGuitar(yolanda):- listens2Music(yolanda).

it can deduceplaysAirGuitar(yolanda), which is what we asked it.
Summing up: any fact produced by an application of modus ponens can
be used as input to further rules. By chaining together applications of
modus ponens in this way, Prolog is able to retrieve information that
logically follows from the rules and facts recorded in the knowledge
base.

The facts and rules contained in a knowledge base are called clauses.
Thus KB2 contains five clauses, namely three rules and two facts.
Another way of looking at KB2 is to say that it consists of three
predicates (or procedures). The three predicates are:

listens2Music

happy

playsAirGuitar

The happy predicate is defined using a single clause (a fact). The
listens2Music and playsAirGuitar predicates are each defined using
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two clauses (in one case, two rules, and in the other case, onerule and
one fact). It is a good idea to think about Prolog programs in terms of
the predicates they contain. In essence, the predicates arethe concepts
we find important, and the various clauses we write down concerning
them are our attempts to pin down what they mean and how they are
inter-related.

One final remark. We can view a fact as a rule with an empty body.
That is, we can think of facts as conditionals that do not haveany
antecedent conditions, or degenerate rules.

Knowledge Base 3

KB3, our third knowledge base, consists of five clauses:

happy(vincent).

listens2Music(butch).

playsAirGuitar(vincent):-

listens2Music(vincent),

happy(vincent).

playsAirGuitar(butch):-

happy(butch).

playsAirGuitar(butch):-

listens2Music(butch).

There are two facts,happy(vincent) and listens2Music(butch), and
three rules.

KB3 defines the same three predicates as KB2 (namelyhappy,
listens2Music, and playsAirGuitar) but it defines them differently.
In particular, the three rules that define theplaysAirGuitar predicate
introduce some new ideas. First, note that the rule

playsAirGuitar(vincent):-

listens2Music(vincent),

happy(vincent).

has two items in its body, or (to use the standard terminology) two goals.
So, what exactly does this rule mean? The most important thing to note
is the comma, that separates the goallistens2Music(vincent) and
the goal happy(vincent) in the rule’s body. This is the way logical
conjunction is expressed in Prolog (that is, the comma meansand). So
this rule says: “Vincent plays air guitar if he listens to music and he is
happy”.

Thus, if we posed the query

?- playsAirGuitar(vincent).
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Prolog would answer no. This is because while KB3 contains
happy(vincent), it does not explicitly contain the information
listens2Music(vincent), and this fact cannot be deduced either. So
KB3 only fulfils one of the two preconditions needed to establish
playsAirGuitar(vincent), and our query fails.

Incidentally, the spacing used in this rule is irrelevant. For example,
we could have written it as

playsAirGuitar(vincent):- happy(vincent),

listens2Music(vincent).

and it would have meant exactly the same thing. Prolog offersus a lot
of freedom in the way we set out knowledge bases, and we can take
advantage of this to keep our code readable.

Next, note that KB3 contains two rules withexactly the same head,
namely:

playsAirGuitar(butch):-

happy(butch).

playsAirGuitar(butch):-

listens2Music(butch).

This is a way of stating that Butch plays air guitareither if he listens
to music, or if he is happy. That is, listing multiple rules with the same
head is a way of expressing logical disjunction (that is, it is a way of
saying or). So if we posed the query

?- playsAirGuitar(butch).

Prolog would answer yes. For although the first of these ruleswill not
help (KB3 does not allow Prolog to conclude thathappy(butch)), KB3
does contain listens2Music(butch) and this means Prolog can apply
modus ponens using the rule

playsAirGuitar(butch):-

listens2Music(butch).

to conclude thatplaysAirGuitar(butch).
There is another way of expressing disjunction in Prolog. Wecould

replace the pair of rules given above by the single rule

playsAirGuitar(butch):-

happy(butch);

listens2Music(butch).
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That is, the semicolon; is the Prolog symbol foror, so this single rule
means exactly the same thing as the previous pair of rules. Isit better
to use multiple rules or the semicolon? That depends. On the one hand,
extensive use of semicolon can make Prolog code hard to read.On the
other hand, the semicolon is more efficient as Prolog only hasto deal
with one rule.

It should now be clear that Prolog has something to do with logic:
after all, the:- means implication, the, means conjunction, and the;
means disjunction. (What about negation? That is a whole other story.
We’ll be discussing it in Chapter 10.) Moreover, we have seenthat a
standard logical proof rule (modus ponens) plays an important role in
Prolog programming. So we are already beginning to understand why
“Prolog” is short for “Programming with logic”.

Knowledge Base 4

Here is KB4, our fourth knowledge base:

woman(mia).

woman(jody).

woman(yolanda).

loves(vincent,mia).

loves(marsellus,mia).

loves(pumpkin,honey_bunny).

loves(honey_bunny,pumpkin).

Now, this is a pretty boring knowledge base. There are no rules, only
a collection of facts. Ok, we are seeing a relation that has two names
as arguments for the first time (namely theloves relation), but, let’s
face it, that’s a rather predictable idea.

No, the novelty this time lies not in the knowledge base, it lies in
the queries we are going to pose. In particular,for the first time we’re
going to make use of variables. Here’s an example:

?- woman(X).

The X is a variable (in fact, any word beginning with an upper-case
letter is a Prolog variable, which is why we had to be careful to use
lower-case initial letters in our earlier examples). Now a variable isn’t a
name, rather it’s aplaceholder for information. That is, this query asks
Prolog: tell me which of the individuals you know about is a woman.
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Prolog answers this query by working its way through KB4, from top
to bottom, trying to unify (or match) the expressionwoman(X) with the
information KB4 contains. Now the first item in the knowledgebase is
woman(mia). So, Prolog unifiesX with mia, thus making the query
agree perfectly with this first item. (Incidentally, there’s a lot of different
terminology for this process: we can also say that Prolog instantiatesX
to mia, or that it bindsX to mia.) Prolog then reports back to us as
follows:

X = mia

That is, it not only says that there is information about at least one
woman in KB4, it actually tells us who she is. It didn’t just say yes, it
actually gave us the variable binding (or variable instantiation) that led
to success.

But that’s not the end of the story. The whole point of variables is
that they can stand for, or unify with, different things. Andthere is
information about other women in the knowledge base. We can access
this information by typing a semicolon:

X = mia ;

Remember that; means or, so this query means: are there any
alternatives? So Prolog begins working through the knowledge base
again (it remembers where it got up to last time and starts from there)
and sees that if it unifiesX with jody, then the query agrees perfectly
with the second entry in the knowledge base. So it responds:

X = mia ;

X = jody

It’s telling us that there is information about a second woman in KB4,
and (once again) it actually gives us the value that led to success. And
of course, if we press; a second time, Prolog returns the answer

X = mia ;

X = jody ;

X = yolanda

But what happens if we press; a third time? Prolog responds no.
No other unifications are possible. There are no other facts starting with
the symbolwoman. The last four entries in the knowledge base concern
the love relation, and there is no way that such entries can be unified
with a query of the formwoman(X).

Let’s try a more complicated query, namely
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?- loves(marsellus,X), woman(X).

Now, remember that, means and, so this query says:is there any
individual X such that Marsellus lovesX and X is a woman? If you
look at the knowledge base you’ll see that there is: Mia is a woman
(fact 1) and Marsellus loves Mia (fact 5). And in fact, Prologis capable
of working this out. That is, it can search through the knowledge base
and work out that if it unifiesX with Mia, then both conjuncts of the
query are satisfied (we’ll learn in the following chapter howProlog does
this). So Prolog returns the answer

X = mia

The business of unifying variables with information in the knowledge
base is the heart of Prolog. As we’ll learn, there are many interesting
ideas in Prolog — but when you get right down to it, it’s Prolog’s ability
to perform unification and return the values of the variable bindings to
us that is crucial.

Knowledge Base 5

Well, we’ve introduced variables, but so far we’ve only usedthem in
queries. But variables not onlycan be used in knowledge bases, it’s only
when we start to do so that we can write truly interesting programs.
Here’s a simple example, the knowledge base KB5:

loves(vincent,mia).

loves(marsellus,mia).

loves(pumpkin,honey_bunny).

loves(honey_bunny,pumpkin).

jealous(X,Y):- loves(X,Z), loves(Y,Z).

KB5 contains four facts about theloves relation and one rule.
(Incidentally, the blank line between the facts and the rulehas no
meaning: it’s simply there to increase the readability. As we said
earlier, Prolog gives us a great deal of freedom in the way we format
knowledge bases.) But this rule is by far the most interesting one we
have seen so far: it contains three variables (note thatX, Y, and Z are
all upper-case letters). What does it say?

In effect, it is defining a concept of jealousy. It says that anindividual
X will be jealous of an individualY if there is some individualZ that X
loves, andY loves that same individualZ too. (Ok, so jealousy isn’t
as straightforward as this in the real world.) The key thing to note is
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that this is a general statement: it is not stated in terms ofmia, or
pumpkin, or anyone in particular — it’s a conditional statement about
everybodyin our little world.

Suppose we pose the query:

?- jealous(marsellus,W).

This query asks: can you find an individualW such that Marsellus is
jealous of W? Vincent is such an individual. If you check the definition
of jealousy, you’ll see that Marsellus must be jealous of Vincent, because
they both love the same woman, namely Mia. So Prolog will return the
value

W = vincent

Now some questions foryou. First, are there any other jealous people
in KB5? Furthermore, suppose we wanted Prolog to tell us about all
the jealous people: what query would we pose? Do any of the answers
surprise you? Do any seem silly?

2 Prolog Syntax
Now that we’ve got some idea of what Prolog does, it’s time to go back
to the beginning and work through the details more carefully. Let’s start
by asking a very basic question: we’ve seen all kinds of expressions (for
examplejody, playsAirGuitar(mia), and X) in our Prolog programs,
but these have just been examples. It’s time for precision: exactly what
are facts, rules, and queries built out of?

The answer is terms, and there are four kinds of term in Prolog:
atoms, numbers, variables, and complex terms (or structures). Atoms and
numbers are lumped together under the heading constants, and constants
and variables together make up the simple terms of Prolog.

Let’s take a closer look. To make things crystal clear, let’sfirst be
precise about the basic characters (that is, symbols) at ourdisposal. The
upper-case lettersare A, B,. . . ,Z; the lower-case lettersare a, b,. . . ,z; the
digits are 0, 1, 2,. . . ,9. In addition we have the_ symbol, which is
called underscore, and somespecial characters, which include characters
such as+, -, *, /, <, >, =, :, ., &, ~. The blank space is also
a character, but a rather unusual one, being invisible. A string is an
unbroken sequence of characters.

Atoms

An atom is either:
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1. A string of characters made up of upper-case letters, lower-case
letters, digits, and the underscore character, that beginswith a lower-
case letter. Here are some examples:butch, big_kahuna_burger,
listens2Music and playsAirGuitar.

2. An arbitrary sequence of characters enclosed in single quotes.
For example ’Vincent’, ’ The Gimp’, ’ Five_Dollar_Shake’,
’&^%&#@$ &*’, and ’ ’. The sequence of characters between the
single quotes is called the atom name. Note that we are allowed
to use spaces in such atoms; in fact, a common reason for using
single quotes is so we can do precisely that.

3. A string of special characters. Here are some examples:@= and
====> and ; and :- are all atoms. As we have seen, some of
these atoms, such as; and :- have a pre-defined meaning.

Numbers

Real numbers aren’t particularly important in typical Prolog applications.
So although most Prolog implementations do support floatingpoint
numbers or floats (that is, representations of real numbers such as
1657.3087 orπ) we say little about them in this book.

But integers (that is: . . . ,-2, -1, 0, 1, 2, 3,. . . ) are useful for such
tasks as counting the elements of a list, and we’ll discuss how to
manipulate them in Chapter 5. Their Prolog syntax is the obvious one:
23, 1001, 0, -365, and so on.

Variables

A variable is a string of upper-case letters, lower-case letters, digits
and underscore characters that startseither with an upper-case letteror
with an underscore. For example,X, Y, Variable, _tag, X_526, List,
List24, _head, Tail, _input and Output are all Prolog variables.

The variable_ (that is, a single underscore character) is rather special.
It’s called the anonymous variable, and we discuss it in Chapter 4.

Complex terms

Constants, numbers, and variables are the building blocks:now we need
to know how to fit them together to make complex terms. Recall that
complex terms are often called structures.

Complex terms are build out of a functor followed by a sequence of
arguments. The arguments are put in ordinary parentheses, separated by
commas, and placed after the functor. Note that the functor has to be
directly followed by the parenthesis; you can’t have a spacebetween the
functor and the parenthesis enclosing the arguments. The functor must
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be an atom. That is, variablescannot be used as functors. On the other
hand, arguments can be any kind of term.

Now, we’ve already seen lots of examples of complex terms
when we looked at the knowledge bases KB1 to KB5. For
example, playsAirGuitar(jody) is a complex term: its functor is
playsAirGuitar and its argument isjody. Other examples are
loves(vincent,mia) and, to give an example containing a variable,
jealous(marsellus,W).

But the definition allows for more complex terms than this. In
fact, it allows us to keep nesting complex terms inside complex terms
indefinitely (that is, it is allows recursive structure). For example

hide(X,father(father(father(butch))))

is a perfectly acceptable complex term. Its functor ishide, and
it has two arguments: the variableX, and the complex term
father(father(father(butch))). This complex term hasfather as
its functor, and another complex term, namelyfather(father(butch)),
as its sole argument. And the argument of this complex term, namely
father(butch), is also complex. But then the nesting bottoms out, for
the argument here is the constantbutch.

As we shall see, such nested (or recursively structured) terms enable
us to represent many problems naturally. In fact the interplay between
recursive term structure and variable unification is the source of much
of Prolog’s power.

The number of arguments that a complex term has is called its
arity. For example,woman(mia) is a complex term of arity 1, and
loves(vincent,mia) is a complex term of arity 2.

Arity is important to Prolog. Prolog would be quite happy forus to
define two predicates with the same functor but with a different number
of arguments. For example, we are free to define a knowledge base
that defines a two-place predicatelove (this might contain such facts
as love(vincent,mia)), and also a three-placelove predicate (which
might contain such facts aslove(vincent,marsellus,mia)). However,
if we did this, Prolog would treat the two-placelove and the three-place
love as different predicates. Later in the book (for example, when we
introduce accumulators in Chapter 5) we shall see that it canbe useful
to define two predicates with the same functor but different arity.

When we need to talk about predicates and how we intend to use
them (for example, in documentation) it is usual to use a suffix /

followed by a number to indicate the predicate’s arity. To return to KB2,
instead of saying that it defines predicates
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listens2Music

happy

playsAirGuitar

we should really say that it defines predicates

listens2Music/1

happy/1

playsAirGuitar/1

And Prolog can’t get confused about a knowledge base containing the
two different love predicates, for it regards thelove/2 predicate and the
love/3 predicate as distinct.

3 Exercises

Exercise 1.1. Which of the following sequences of characters areE
atoms, which are variables, and which are neither?

1. vINCENT

2. Footmassage

3. variable23

4. Variable2000

5. big_kahuna_burger

6. ’big kahuna burger’

7. big kahuna burger

8. ’Jules’

9. _Jules

10. ’_Jules’

Exercise 1.2. Which of the following sequences of characters areE
atoms, which are variables, which are complex terms, and which are not
terms at all? Give the functor and arity of each complex term.

1. loves(Vincent,mia)

2. ’loves(Vincent,mia)’
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3. Butch(boxer)

4. boxer(Butch)

5. and(big(burger),kahuna(burger))

6. and(big(X),kahuna(X))

7. _and(big(X),kahuna(X))

8. (Butch kills Vincent)

9. kills(Butch Vincent)

10. kills(Butch,Vincent

Exercise 1.3. How many facts, rules, clauses, and predicates are there E
in the following knowledge base? What are the heads of the rules, and
what are the goals they contain?

woman(vincent).

woman(mia).

man(jules).

person(X):- man(X); woman(X).

loves(X,Y):- father(X,Y).

father(Y,Z):- man(Y), son(Z,Y).

father(Y,Z):- man(Y), daughter(Z,Y).

Exercise 1.4. Represent the following in Prolog: E

1. Butch is a killer.

2. Mia and Marsellus are married.

3. Zed is dead.

4. Marsellus kills everyone who gives Mia a footmassage.

5. Mia loves everyone who is a good dancer.

6. Jules eats anything that is nutritious or tasty.

Exercise 1.5. Suppose we are working with the following knowledge E
base:
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wizard(ron).

hasWand(harry).

quidditchPlayer(harry).

wizard(X):- hasBroom(X), hasWand(X).

hasBroom(X):- quidditchPlayer(X).

How does Prolog respond to the following queries?

1. wizard(ron).

2. witch(ron).

3. wizard(hermione).

4. witch(hermione).

5. wizard(harry).

6. wizard(Y).

7. witch(Y).

4 Practical Session
Don’t be fooled by the fact that the description of the practical sessions
is shorter than the text you have just read; the practical part is definitely
the most important. Yes, you need to read the text and do the exercises,
but that’s not enough to become a Prolog programmer. To really master
the language you need to sit down in front of a computer and play with
Prolog — a lot!

The goal of the first practical session is for you to become familiar
with the basics of how to create and run simple Prolog programs. Now,
because there are many different implementations of Prolog, and different
operating systems you can run them under, we can’t be too specific
here. Rather, what we’ll do is describe in very general termswhat is
involved in running Prolog, list the practical skills you need to master,
and suggest some things for you to do.

The simplest way to run a Prolog program is as follows. You have
a file with your Prolog program in it (for example, you may havea
file kb2.pl which contains the knowledge base KB2). You then start
Prolog. Prolog will display its prompt, something like

?-
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which indicates that it is ready to accept a query.
Now, at this stage, Prolog knows absolutely nothing about KB2 (or

indeed anything else). To see this, type in the commandlisting,
followed by a full stop, and hit return. That is, type

?- listing.

and press the return key.
Now, the listing command is a special built-in Prolog predicate that

instructs Prolog to display the contents of the current knowledge base.
But we haven’t yet told Prolog about any knowledge bases, so it will
just say

yes

This is a correct answer: as yet Prolog knows nothing — so it correctly
displays all this nothing and saysyes. Actually, with more sophisticated
Prolog implementations you may get a little more (for example, the
names of libraries that have been loaded; libraries are discussed in
Chapter 12) but, one way or another, you will receive what is essentially
an “I know nothing about any knowledge bases!” answer.

So let’s tell Prolog about KB2. Assuming that you’ve stored KB2
in the file kb2.pl, and that this file is in the directory where you’re
running Prolog, all you have to type is

?- [kb2].

This tells Prolog to consult the filekb2.pl, and load the contents as its
new knowledge base. Assuming thatkb2.pl contains no typos, Prolog
will read it in, maybe print out a message saying that it is consulting
this file, and then answer:

yes

Incidentally, it is common to store Prolog code in files with a.pl
suffix. It’s an indication of what the file contains (namely Prolog code)
and with some Prolog implementations you don’t actually have to type
in the .pl suffix when you consult a file. Nice — but there is a
drawback. Files containing Perl scripts usually have a.pl suffix too,
and nowadays there are a lot of Perl scripts in use, so this cancause
confusion. C’est la vie.

If the above doesn’t work, that is, if typing

?- [kb2].
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produces an error message saying that the filekb2 does not exist, then
you probably haven’t started Prolog from the directory where kb2.pl is
stored. In that case, you can either stop Prolog (by typinghalt. after
the prompt), change to the directory wherekb2.pl is stored, and start
Prolog again. Or you can tell Prolog exactly where to look forkb2.pl.
To do this, instead of writing onlykb2 between the square brackets, you
give Prolog the whole path enclosed in single quotes. For example, you
type something like

?- [’home/kris/Prolog/kb2.pl’].

or

?- [’c:/Documents and Settings/Kris/Prolog/kb2.pl’].

Ok, so Prolog should now know about all the KB2 predicates. And
we can check whether it does by using thelisting command again:

?- listing.

If you do this, Prolog will list (something like) the following on the
screen:

listens2Music(mia).

happy(yolanda).

playsAirGuitar(mia):-

listens2Music(mia).

playsAirGuitar(yolanda):-

listens2Music(yolanda).

listens2Music(yolanda):-

happy(yolanda).

yes

That is, it will list the facts and rules that make up KB2, and then say
yes. Once again, you may get a little more than this, such as the
locations of various libraries that have been loaded.

Incidentally, listing can be used in other ways. For example, typing

?- listing(playsAirGuitar).

simply lists all the information in the knowledge base aboutthe
playsAirGuitar predicate. So in this case Prolog will display



Chapter 1: Facts, Rules, and Queries 19

playsAirGuitar(mia):-

listens2Music(mia).

playsAirGuitar(yolanda):-

listens2Music(yolanda).

yes

Well — now you’re ready to go. KB2 is loaded and Prolog is
running, so you can (and should!) start making exactly the sort of
inquiries we discussed in the text.

But let’s back up a little, and summarise a few of the practical skills
you will need to master to get this far:

• You will need to know some basic facts about the operating system
you are using, such as the directory structure it uses. Afterall,
you will need to know how to save the files containing programs
where you want them.

• You will need to know how to use some sort of text editor, in
order to write and modify programs. Some Prolog implementations
come with built-in text editors, but if you already know a text
editor (such as Emacs) you can use this to write your Prolog code.
Just make sure that you save your files as simple text files (for
example, if you are working under Windows, don’t save them as
Word documents).

• You may want to take example Prolog programs from the internet.
So make sure you know how to use a browser to find what you
want, and to store the code where you want it.

• You need to know how to start your version of Prolog, and how
to consult files with it.

The sooner you pick up these skills, the better. With them outof the
way (which shouldn’t take long) you can start concentratingon mastering
Prolog (which will take longer).

But assuming you have mastered these skills, what next? Quite simply,
play with Prolog! Consult the various knowledge bases discussed in the
text, and check that the queries discussed really do work theway we
said they did. In particular, take a look at KB5 and make sure you
understand why you get those peculiar jealousy relations. Try posing
new queries. Experiment with thelisting predicate (it’s a useful tool).
Type in the knowledge base used in Exercise 1.5, and check whether
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your answers are correct. Best of all, think of some simple situation that
interests you, and create a brand-new knowledge base from scratch.



Chapter 2

Unification and Proof Search

This chapter has two main goals:

1. To discuss unification in Prolog, and to explain
how Prolog unification differs from standard
unification. Along the way, we’ll introduce
=/2, the built-in predicate for Prolog unifica-
tion, and unify with occurs check/2, the
built-in predicate for standard unification.

2. To explain the search strategy Prolog uses
when it tries to deduce new information from
old using modus ponens.
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1 Unification
When working with knowledge base KB4 in the previous chapter, we
briefly mentioned the idea of unification. We said, for example, that
Prolog unifies woman(X) with woman(mia), thereby instantiating the
variable X to mia. It’s now time to take a closer look at unification, for
it is one of the most fundamental ideas in Prolog.

Recall that there are three types of term:

1. Constants. These can either be atoms (such asvincent) or
numbers (such as24).

2. Variables. (Such asX, Z3, and List.)

3. Complex terms. These have the form:
functor(term_1,...,term_n).

We are going to work our way towards a definition of when Prolog
will unify two terms. Our starting point will be the following working
definition. It gives the basic intuition, but is a little light on detail:

Two terms unify if they are the same term or if they contain
variables that can be uniformly instantiated with terms in such a
way that the resulting terms are equal.

This means, for example, that the termsmia and mia unify, because
they are the same atom. Similarly, the terms42 and 42 unify, because
they are the same number, the termsX and X unify, because they are
the same variable, and the termswoman(mia) and woman(mia) unify,
because they are the same complex term. The termswoman(mia) and
woman(vincent), however, do not unify, as they are not the same (and
neither of them contains a variable that could be instantiated to make
them the same).

Now, what about the termsmia and X? They are not the same.
However, the variableX can be instantiated tomia which makes them
equal. So, by the second part of our working definition,mia and X unify.
Similarly, the termswoman(X) and woman(mia) unify, because they can
be made equal by instantiatingX to mia. How aboutloves(vincent,X)
and loves(X,mia)? No. It is impossible to find an instantiation of
X that makes the two terms equal. Do you see why? Instantiating
X to vincent would give us the termsloves(vincent,vincent)
and loves(vincent,mia), which are obviously not equal. However,
instantiatingX to mia, would yield the termsloves(vincent,mia) and
loves(mia,mia), which aren’t equal either.
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Usually we are not only interested in the fact that two terms unify,
we also want to know how the variables have to be instantiatedto make
them equal. And Prolog gives us this information. When Prolog unifies
two terms it performs all the necessary instantiations, so that the terms
really are equal afterwards. This functionality, togetherwith the fact that
we are allowed to build complex terms (that is, recursively structured
terms) makes unification a powerful programming mechanism.

The basic intuitions should now be clear. Here’s the definition which
makes them precise. It tells us not only which terms Prolog will unify,
but also what it will do to the variables to achieve this.

1. If term1 and term2 are constants, thenterm1 and term2 unify
if and only if they are the same atom, or the same number.

2. If term1 is a variable andterm2 is any type of term, thenterm1
and term2 unify, and term1 is instantiated toterm2. Similarly, if
term2 is a variable andterm1 is any type of term, thenterm1
and term2 unify, and term2 is instantiated toterm1. (So if they
are both variables, they’re both instantiated to each other, and we
say that they share values.)

3. If term1 and term2 are complex terms, then they unify if and
only if:

(a) They have the same functor and arity, and

(b) all their corresponding arguments unify, and

(c) the variable instantiations are compatible. (For example,it is
not possible to instantiate variableX to mia when unifying
one pair of arguments, and to instantiateX to vincent when
unifying another pair of arguments.)

4. Two terms unify if and only if it follows from the previous three
clauses that they unify.

Let’s have a look at the form of this definition. The first clause tells
us when two constants unify. The second clause tells us when two
terms, one of which is a variable, unify (such terms will always unify;
variables unify withanything). Just as importantly, this clause also tells
what instantiations we have to perform to make the two terms the same.
Finally, the third clause tells us when two complex terms unify. Note
the structure of this definition. Its first three clauses mirror perfectly the
(recursive) structure of terms.
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The fourth clause is also important: it says that the first three clauses
tell us all we need to know about the unification of two terms. If two
terms can’t be shown to unify using clauses 1–3, then theydon’t unify.
For example,batman does not unify withdaughter(ink). Why not?
Well, the first term is a constant, and the second is a complex term.
But none of the first three clauses tell us how to unify two suchterms,
hence (by clause 4) they don’t unify.

Examples

To make sure we’ve fully understood this definition, let’s work through
several examples. In these examples we’ll make use of an important
built-in predicate, the=/2 predicate (recall that writing/2 at the end
indicates that this predicate takes two arguments).

The =/2 predicate tests whether its two arguments unify. For example,
if we pose the query

?- =(mia,mia).

Prolog will respond yes, and if we pose the query

?- =(mia,vincent).

Prolog will respond no.
But we usually wouldn’t pose these queries in quite this way.Let’s

face it, the notation=(mia,mia) is rather unnatural. It would be nicer
if we could use infix notation (that is, if we could put the=/2 functor
between its arguments) and write things like:

?- mia = mia.

In fact, Prolog lets us do this, so in the examples that followwe’ll use
infix notation.

Let’s return to our first example:

?- mia = mia.

yes

Why does Prolog say yes? This may seem like a silly question:
surely it’s obvious that the terms unify! That’s true, but how does this
follow from the definition given above? It is important to learn to think
systematically about unification (it is utterly fundamental to Prolog), and
thinking systematically means relating the examples to thedefinition of
unification given above. So let’s think this example through.
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The definition has three clauses. Now, clause 2 is for when one
argument is a variable, and clause 3 is for when both arguments are
complex terms, so these are of no use here. However clause 1is
relevant to our example. This tells us that two constants unify if and
only if they are exactly the same object. Asmia and mia are the same
atom, unification succeeds.

A similar argument explains the following responses:

?- 2 = 2.

yes

?- mia = vincent.

no

Once again, clause 1 is relevant here (after all,2, mia, and vincent

are all constants). And as2 is the same number as2, and asmia is
not the same atom asvincent, Prolog responds yes to the first query
and no to the second.

However clause 1 does hold one small surprise for us. Consider the
following query:

?- ’mia’ = mia.

yes

What’s going on here? Why do these two terms unify? Well, as far as
Prolog is concerned,’mia’ and mia are the same atom. In fact, for
Prolog, any atom of the form’symbols’ is considered the same entity
as the atom of the formsymbols. This can be a useful feature in
certain kinds of programs, so don’t forget it.

On the other hand, to the query

?- ’2’ = 2.

Prolog will respond no. And if you think about the definitionsgiven in
Chapter 1, you will see that this has to be the way things work.After
all, 2 is a number, but’2’ is an atom. They simply cannot be the
same.

Let’s try an example with a variable:

?- mia = X.

X = mia

yes
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Again, this in an easy example: clearly the variableX can be unified
with the constantmia, and Prolog does so, and tells us that it has made
this unification. Fine, but how does this follow from our definition?

The relevant clause here is clause 2. This tells us what happens when
at least one of the arguments is a variable. In our example it is the
second term which is the variable. The definition tells us unification
is possible, and also says that the variable is instantiatedto the first
argument, namelymia. And this, of course, is exactly what Prolog does.

Now for an important example: what happens with the following
query?

?- X = Y.

Well, depending on your Prolog implementation, you may justget back
the output

?- X = Y.

yes

Prolog is simply agreeing that the two terms unify (after all, variables
unify with anything, so they certainly unify with each other) and making
a note that from now on,X and Y denote the same object, that is, share
values.

On the other hand, you may get the following output:

X = _5071

Y = _5071

yes

What’s going on here? Essentially the same thing. Note that_5071 is a
variable (recall from Chapter 1 that strings of letters and numbers that
start with the underscore character are variables). Now look at clause 2
of the definition of unification. This tells us that when two variables
are unified, they share values. So Prolog has created a new variable
(namely _5071) and from now on bothX and Y share the value of this
variable. In effect, Prolog is creating a common variable name for the
two original variables. Needless to say, there’s nothing magic about the
number5071. Prolog just needs to generate a brand new variable name,
and using numbers is a handy way to do this. It might just as well
generate_5075, or _6189, or whatever.

Here is another example involving only atoms and variables.How do
you think will Prolog respond?

?- X = mia, X = vincent.
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Prolog will respond no. This query involves two goals,X = mia and
X = vincent. Taken separately, Prolog would succeed at both of them,
instantiatingX to mia in the first case and tovincent in the second.
And that’s exactly the problem here: once Prolog has worked through
the first goal,X is instantiated to (and therefore equal to)mia, so that it
simply can’t unify with vincent anymore. Hence the second goal fails.
An instantiated variable isn’t really a variable anymore: it has become
what it was instantiated with.

Now let’s look at an example involving complex terms:

?- k(s(g),Y) = k(X,t(k)).

X = s(g)

Y = t(k)

yes

Clearly the two complex terms unify if the stated variable instantiations
are carried out. But how does this follow from the definition?Well,
first of all, clause 3 has to be used here because we are trying to
unify two complex terms. So the first thing we need to do is check
that both complex terms have the same functor and arity. And they
do. Clause 3 also tells us that we have to unify the corresponding
arguments in each complex term. So do the first arguments,s(g) and
X, unify? By clause 2, yes, and we instantiateX to s(g). So do the
second arguments,Y and t(k), unify? Again by clause 2, yes, and we
instantiateY to t(k).

Here’s another example with complex terms:

?- k(s(g), t(k)) = k(X,t(Y)).

X = s(g)

Y = k

yes

It should be clear that the two terms unify if these instantiations are
carried out. But can you explain, step by step, how this relates to the
definition?

Here is a last example:

?- loves(X,X) = loves(marcellus,mia).

Do these terms unify? No, they don’t. It’s true that they are both
complex terms and have the same functor and arity, but clause3 also
demands that all corresponding arguments have to unify, andthat the
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variable instantiations have to be compatible. This is not the case
here. Unifying the first arguments would instantiateX with marcellus.
Unifying the second arguments would instantiateX with mia. Either way,
we’re blocked.

The occurs check

Unification is a well-known concept, used in several branches of computer
science. It has been thoroughly studied, and many unification algorithms
are known. But Prolog doesnot use a standard unification algorithm
when it performs its version of unification. Instead it takesa shortcut.
You need to know about this shortcut.

Consider the following query:

?- father(X) = X.

Do these terms unify or not? A standard unification algorithm
would say: “No, they don’t”. Why is that? Well, pick any term
and instantiateX to the term you picked. For example, if you
instantiateX to father(father(butch)), the left hand side becomes
father(father(father(butch))), and the right hand side becomes
father(father(butch)). Obviously these don’t unify. Moreover, it
makes no difference what term you instantiateX to. No matter what you
choose, the two terms cannot possibly be made the same, for the term
on the left will always be one symbol longer than the term on the right
(the functorfather on the left will always give it that one extra level).
A standard unification algorithm will spot this (we’ll see why shortly
when we discuss the occurs check), halt, and tell us no.

The recursive definition of Prolog unification given earlierwon’t do
this. Because the left hand term is the variableX, by clause 2 it
decides that the termsdo unify, and (in accordance with clause 2)
instantiatesX to the right hand side, namelyfather(X). But there’s an
X in this term, andX has been instantiated tofather(X), so Prolog
realises thatfather(X) is really father(father(X)). But there’s anX
here too, andX has been instantiated tofather(X), so Prolog realises
that father(father(X)) is really father(father(father(X))), and
so on. Having instantiatedX to father(X), Prolog is committed to
carrying out an unending sequence of expansions.

At least, that’s the theory. What happens in practice? Well,with
older Prolog implementations, what we’ve just described isexactly what
happens. You would get a message like:

Not enough memory to complete query!

and a long string of symbols like:
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X = father(father(father(father(father(father

(father(father(father(father(father(father

(father(father(father(father(father(father

(father(father(father(father(father(father

(father(father(father(father(father(father

Prolog is desperatelytrying to come back with the correctly instantiated
terms, but it can’t halt, because the instantiation processis unbounded.
From an abstract mathematical perspective, what Prolog is trying to do is
sensible. Intuitively, the only way the two terms could be made to unify
would be if X was instantiated to a term containing an infinitely long
string of father functors, so that the effect of the extrafather functor
on the left hand side was cancelled out. But the terms we compute
with are finite entities. Infinite terms are an interesting mathematical
abstraction, but they’re not something we can work with. No matter how
hard Prolog tries, it can never build one.

Now, it’s annoying to have Prolog running out of memory like this,
and sophisticated Prolog implementations have found ways of coping
more gracefully. Try posing the queryfather(X) = X to SWI Prolog
or SICStus Prolog. The answer will be something like:

X = father(father(father(father(...))))))))

yes

That is, these implementations insist that unificationis possible, but they
don’t fall into the trap of actually trying to instantiate a finite term for
X as the naive implementations do. Instead, they detect that there is a
potential problem, halt, declare that unification is possible, and print out
a finite representation of an infinite term, like the

father(father(father(father(...))))))))

in the previous query. Can you compute with these finite representations
of infinite terms? That depends on the implementation. In some systems
you cannot do much with them. For example, posing the query

?- X = father(X), Y = father(Y), X = Y.

would result in a crash (note that theX = Y demands that we unify two
finite representations of infinite terms). Nonetheless, in some modern
systems unification works robustly with such representations (for example,
both SWI and Sicstus can handle the previous example) so you can
actually use them in your programs. However, why you might want to
use such representations, and what such representations actually are, are
topics that lie beyond the scope of this book.
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In short, there are actuallythree different responses to the question
“does father(X) unify with X”. There is the answer given by the
standard unification algorithm (which is to say no), the response of
older Prolog implementations (which is to run amok until they use up
the available memory), and the answer given by sophisticated Prolog
implementations (which is to say yes, and return a finite representation
of an infinite term). In short, there is no ‘right’ answer to this
question. What is important is that you understand the difference between
standard unification and Prolog unification, and know how theProlog
implementation thatyou work with handles such examples.

Now, in the practical session at the end of the chapter we ask you to
try out such examples with your Prolog interpreter. Here we want to say
a little more about the difference between Prolog unification and standard
unification. Given the very different ways they handle this example, it
may seem that standard unification algorithms and the Prologapproach
to unification are inherently different. Actually, they’renot. There is
one simple difference between the two algorithms that accounts for their
different behaviour when faced with the task of unifying terms like X

and father(X). A standard algorithm, when given two terms to unify,
first carries out what is known as the occurs check. This meansthat if
it is asked to unify a variable with a term, it first checks whether the
variable occurs in the term. If it does, the standard algorithm declares
that unification is impossible, for clearly it is the presence of the variable
X in father(X) which leads to the problems discussed earlier. Only if
the variable does not occur in the term do standard algorithms attempt
to carry out the unification.

To put it another way, standard unification algorithms arepessimistic.
They first carry out the occurs check, and only when they are sure that
the situation is safe they do go ahead and actually try to unify the
terms. So a standard unification algorithm will never get locked into a
situation where it is endlessly trying to instantiate variables, or having
to appeal to infinite terms.

Prolog, on the other hand, isoptimistic. It assumes that you are not
going to give it anything dangerous. So it takes a shortcut: it omits the
occurs check. As soon as you give it two terms, it rushes aheadand
tries to unify them. As Prolog is a programming language, this is an
intelligent strategy. Unification is one of the fundamentalprocesses that
makes Prolog work, so it needs to be carried out as fast as possible.
Carrying out an occurs check every time unification is calledfor would
slow it down considerably. Pessimism is safe, but optimism is a lot
faster! Prolog can only run into problems if you, the programmer, ask it
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to do something like unifyX with father(X). And it is unlikely you
will ever (intentionally) ask it to do anything like that when writing a
real program.

One final remark. Prolog comes with a built-in predicate thatcarries
out standard unification (that is, unification with the occurs check). The
predicate is

unify_with_occurs_check/2.

So if we posed the query

?- unify_with_occurs_check(father(X),X).

we would get the response no.

Programming with unification

As we’ve said, unification is a fundamental operation in Prolog. It plays
a key role in Prolog proof search (as we shall soon learn), andthis
alone makes it vital. However, as you get to know Prolog better, it
will become clear that unification is interesting and important in its own
right. Indeed, sometimes you can write useful programs simply by using
complex terms to define interesting concepts. Unification can then be
used to pull out the information you want.

Here’s a simple example of this, due to Ivan Bratko.1 The following
two line knowledge base defines two predicates, namelyvertical/1 and
horizontal/1, which specify what it means for a line to be vertical or
horizontal respectively:

vertical(line(point(X,Y),point(X,Z))).

horizontal(line(point(X,Y),point(Z,Y))).

Now, at first glance this knowledge base may seem too simple to
be interesting: it contains just two facts, and no rules. Butwait a
minute: the two facts are expressed using complex terms which again
have complex terms as arguments. Indeed, there are three levels of
terms nested inside terms. Moreover, the deepest level arguments are all
variables, so the concepts are being defined in a general way.Maybe
it’s not quite as simple as it seems. Let’s take a closer look.

Right down at the bottom level, we have a complex term with
functor point and two arguments. Its two arguments are intended to be
instantiated to numbers:point(X,Y) represents the Cartesian coordinates

1See his bookProlog Programing for Artificial Intelligence, Addison-Wesley Publishing
Company, 1990, second edition, pages 41–43.
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of a point. That is, theX indicates the horizontal distance the point is
from some fixed point, while theY indicates the vertical distance from
that same fixed point.

Now, once we’ve specified two distinct points, we’ve specified a line,
namely the line between them. So the two complex terms representing
points are bundled together as the two arguments of another complex
term with the functorline. In effect, we represent a line by a complex
term which has two arguments which are complex terms themselves and
represent points. We’re using Prolog’s ability to build complex terms to
work our way up a hierarchy of concepts.

Being vertical, and being horizontal, are properties of lines. The
predicatesvertical and horizontal therefore both take one argument
which represents a line. The definition ofvertical/1 simply says: a
line that goes between two points that have the same x-coordinate is
vertical. Note how we capture the effect of “the same x-coordinate”
in Prolog: we simply make use of the same variableX as the first
argument of the two complex terms representing the points.

Similarly, the definition of horizontal/1 simply says: a line that
goes between two points that have the same y-coordinate is horizontal.
To capture the effect of “the same y-coordinate”, we use the same
variableY as the second argument of the two complex terms representing
the points.

What can we do with this knowledge base? Let’s look at some
examples:

?- vertical(line(point(1,1),point(1,3))).

yes

This should be clear: the query unifies with the definition ofvertical/1

in our little knowledge base (and in particular, the representations of the
two points have the same first argument) so Prolog says yes. Similarly
we have:

?- vertical(line(point(1,1),point(3,2))).

no

This query does not unify with the definition ofvertical/1 (the
representations of the two points have different first arguments) so Prolog
says no.

But we can also ask more general questions:

?- horizontal(line(point(1,1),point(2,Y))).
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Y = 1 ;

no

Here our query is: if we want a horizontal line between a pointat
(1,1), and point whose x-coordinate is 2, what should the y-coordinate
of that second point be? Prolog correctly tells us that the y-coordinate
should be 1. If we then ask Prolog for a second possibility (note the ;)
it tells us that no other possibilities exist.

Now consider the following:

?- horizontal(line(point(2,3),P)).

P = point(_1972,3) ;

no

This query is: if we want a horizontal line between a point at (2,3),
and some other point, what other points are permissible? Theanswer
is: any point whose y-coordinate is 3. Note that the_1972 in the first
argument of the answer is a variable, which is Prolog’s way oftelling
us that any x-coordinate at all will do.

A general remark: the answer given to our last query, namely
point(_1972,3), is structured. That is, the answer is a complex
term, representing a sophisticated concept (namely “any point whose
y-coordinate is 3”). This structure was built using unification and nothing
else: no logical inference (and in particular, no use of modus ponens)
was used to produce it. Building structure by unification turns out to
be a powerful idea in Prolog programming, far more powerful than this
rather simple example might suggest. Moreover, when a program is
written that makes heavy use of unification, it is likely to beextremely
efficient. We will study a beautiful example in Chapter 7 whenwe
discuss difference lists, which are used to implement Prolog’s built-in
grammar system, Definite Clause Grammars.

This style of programming is particularly useful in applications where
the important concepts have a natural hierarchical structure (as they did
in the simple knowledge base above), for we can then use complex
terms to represent this structure, and unification to accessit. This
way of working plays an important role in computational linguistics, for
example, because information about language has a natural hierarchical
structure (think of the way sentences can be analysed into noun phrases
and verb phrases, and noun phrases analysed into determiners and nouns,
and so on).
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2 Proof Search
Now that we know about unification, we are in a position to learn how
Prolog actually searches a knowledge base to see if a query issatisfied.
That is, we are ready to learn about proof search. We will introduce
the basic ideas involved by working through a simple example.

Suppose we are working with the following knowledge base

f(a).

f(b).

g(a).

g(b).

h(b).

k(X) :- f(X), g(X), h(X).

Suppose we then pose the query

?- k(Y).

It is probably clear that there is only one answer to this query, namely
k(b), but how exactly does Prolog work this out? Let’s see.

Prolog reads the knowledge base, and tries to unifyk(Y) with either
a fact, or the head of a rule. It searches the knowledge base top
to bottom, and carries out the unification, if it can, at the first place
possible. Here there is only one possibility: it must unifyk(Y) to the
head of the rulek(X) :- f(X), g(X), h(X).

When Prolog unifies the variable in a query to a variable in a fact
or rule, it generates a brand new variable (say_G34) to represent the
shared variables. So the original query now reads:

k(_G34)

and Prolog knows that

k(_G34) :- f(_G34), g(_G34), h(_G34).

So what do we now have? The original query says: “I want to find
an individual that has propertyk”. The rule says, “an individual has
property k if it has propertiesf, g, and h”. So if Prolog can find an
individual with propertiesf, g, and h, it will have satisfied the original
query. So Prolog replaces the original query with the following list of
goals:
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f(_G34), g(_G34), h(_G34).

Our discussion of the querying process so far can be made more
elegant and succinct if we think graphically. Consider the following
diagram:

?- k(Y)

?- f( G34),g( G34),h( G34)

Y = G34

Everything in a box is either a query or a goal. In particular,our
original goal was to provek(Y), thus this is shown in the top box.
When we unifiedk(Y) with the head of the rule in the knowledge base,
X Y, and the new internal variable_G34 were made to share values, and
we were left with the goalsf(_G34),g(_G34),h(_G34), just as shown.

Now, whenever it has a list of goals, Prolog tries to satisfy them one
by one, working through the list in a left to right direction.The leftmost
goal is f(_G34), which reads: “I want an individual with propertyf”.
Can this goal be satisfied? Prolog tries to do so by searching through
the knowledge base from top to bottom. The first item it finds that
unifies with this goal is the factf(a). This satisfies the goalf(_G34)
and we are left with two more goals. Now, when we unifyf(_G34)
to f(a), _G34 is instantiated toa, and this instantiation applies to all
occurrences of_G34 in the list of goals. So the list now looks like this:

g(a),h(a)

and our graphical representation of the proof search now looks like this:

?- k(Y)

?- f( G34),g( G34),h( G34)

Y = G34

?- g(a),h(a)

G34 = a

But the factg(a) is in the knowledge base, so the first goal we have
to prove is satisfied too. So the goal list becomes

h(a)
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and the graphical representation is now

?- k(Y)

?- f( G34),g( G34),h( G34)

X = G34

?- g(a),h(a)

G34 = a

?- h(a)

But there is no way to satisfyh(a), the last remaining goal. The only
information abouth we have in the knowledge base ish(b), and this
won’t unify with h(a).

So what happens next? Well, Prolog decides it has made a mistake,
and checks whether it has missed any possible ways of unifying a goal
with a fact or the head of a rule in the knowledge base. It does this by
going back up the path shown in the graphical representation, looking
for alternatives. Now, there is nothing else in the knowledge base that
unifies with g(a), but thereis another way of unifyingf(_G34). Points
in the search where there are several alternative ways of unifying a
goal against the knowledge base are called choice points. Prolog keeps
track of choice points it has encountered, so that if it makesa wrong
choice it can retreat to the previous choice point and try something else
instead. This process is called backtracking, and it is fundamental to
proof search in Prolog.

So let’s carry on with our example. Prolog backtracks to the last
choice point. This is the point in the graphical representation where the
list of goals was:

f(_G34),g(_G34),h(_G34).

Prolog must now redo this work. First it must try to re-satisfy the first
goal by searching further in the knowledge base. It can do this: it sees
that it can unify the first goal with information in the knowledge base
by unifying f(_G34) with f(b). This satisfies the goalf(_G34) and
instantiatesX to b, so that the remaining goal list is

g(b),h(b).
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But g(b) is a fact in the knowledge base, so this is satisfied too,
leaving the goal list:

h(b).

Moreover, this fact too is in the knowledge base, so this goalis also
satisfied. So Prolog now has an empty list of goals. This meansthat it
has now proved everything required to establish the original goal (that
is, k(Y)). So the original queryis satisfiable, and moreover, Prolog has
also discovered what it has to do to satisfy it (namely instantiate Y to b).

It is interesting to consider what happens if we then ask for another
solution by typing:

;

This forces Prolog to backtrack to the last choice point, to try and
find another possibility. However, there are no other choicepoints, as
there are no other possibilities for unifyingh(b), g(b), f(_G34), or
k(Y) with clauses in the knowledge base, so Prolog would respond no.
On the other hand, if there had been other rules involvingk, Prolog
would have gone off and tried to use them in exactly the way we have
described: that is, by searching top to bottom in the knowledge base,
left to right in goal lists, and backtracking to the previouschoice point
whenever it fails.

Let’s take a look at the graphical representation of the entire search
process. Some general remarks are called for, for such representations
are an important way of thinking about proof search in Prolog.

?- k(Y)

?- f( G34),g( G34),h( G34)

Y = G34

?- g(a),h(a)

G34 = a

?- h(a)

†

?- g(b),h(b)

G34 = b

?- h(b)
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This diagram has the form of a tree; in fact it is our first example of
what is known as a search tree. The nodes of such trees say which
goals have to be satisfied at the various steps of the proof search, and
the edges keep track of the variable instantiations that aremade when
the current goal (that is, the first one in the list of goals) isunified to
a fact or to the head of a rule in the knowledge base. Leaf nodes
which still contain unsatisfied goals are points where Prolog failed (either
because it made a wrong decision somewhere along the path, orbecause
no solution exists). Leaf nodes with an empty goal list correspond to
a possible solution. The edges along the path from the root node to a
successful leaf node tell you the variable instantiations that need to be
made to satisfy the original query.

Let’s have a look at another example. Suppose that we are working
with the following knowledge base:

loves(vincent,mia).

loves(marcellus,mia).

jealous(A,B):- loves(A,C), loves(B,C).

Now we pose the query

?- jealous(X,Y).

The search tree for the query looks like this:

?- jealous(X,Y)

?- loves( G5, G6),loves( G7, G6)

X = G5,

Y = G7

?- loves( G7,mia)

G5 = vincent,

G6 = mia

G7 = vincent G7 = marcellus

?- loves( G7,mia)

G5 = marcellus,

G6 = mia

G7 = vincent G7 = marcellus

There is only one possible way of unifyingjealous(X,Y) against
the knowledge base, namely by using the rule
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jealous(A,B):- loves(A,C), loves(B,C).

So the new goals that have to be satisfied are:

loves(_G5,_G6),loves(_G7,_G6)

Now we have to unifyloves(_G5,_G6) against the knowledge base.
There are two ways of doing this (it can either be unified with the first
fact or with the second fact) and this is why the path branchesat this
point. In both cases the goalloves(_G7,mia) remains, and this can
also be satisfied by using either of two facts. All in all thereare four
leaf nodes with an empty goal list, which means that there arefour
ways of satisfying the original query. The variable instantiations for each
solution can be read off the path from the root to the leaf node. So the
four solutions are:

1. X = _G5 = vincent and Y = _G7 = vincent

2. X = _G5 = vincent and Y = _G7 = marcellus

3. X = _G5 = marcellus and Y = _G7 = vincent

4. X = _G5 = marcellus and Y = _G7 = marcellus

Work through this example carefully, and make sure you understand it.

3 Exercises

Exercise 2.1. Which of the following pairs of terms unify? Where E
relevant, give the variable instantiations that lead to successful unification.

1. bread = bread

2. ’Bread’ = bread

3. ’bread’ = bread

4. Bread = bread

5. bread = sausage

6. food(bread) = bread

7. food(bread) = X

8. food(X) = food(bread)

9. food(bread,X) = food(Y,sausage)
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10. food(bread,X,beer) = food(Y,sausage,X)

11. food(bread,X,beer) = food(Y,kahuna_burger)

12. food(X) = X

13. meal(food(bread),drink(beer)) = meal(X,Y)

14. meal(food(bread),X) = meal(X,drink(beer))

Exercise 2.2. We are working with the following knowledge base:E

house_elf(dobby).

witch(hermione).

witch(’McGonagall’).

witch(rita_skeeter).

magic(X):- house_elf(X).

magic(X):- wizard(X).

magic(X):- witch(X).

Which of the following queries are satisfied? Where relevant, give all
the variable instantiations that lead to success.

1. ?- magic(house_elf).

2. ?- wizard(harry).

3. ?- magic(wizard).

4. ?- magic(’McGonagall’).

5. ?- magic(Hermione).

Draw the search tree for the querymagic(Hermione).

Exercise 2.3. Here is a tiny lexicon (that is, information aboutE
individual words) and a mini grammar consisting of one syntactic rule
(which defines a sentence to be an entity consisting of five words in the
following order: a determiner, a noun, a verb, a determiner,a noun).

word(determiner,a).

word(determiner,every).

word(noun,criminal).

word(noun,’big kahuna burger’).

word(verb,eats).

word(verb,likes).
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sentence(Word1,Word2,Word3,Word4,Word5):-

word(determiner,Word1),

word(noun,Word2),

word(verb,Word3),

word(determiner,Word4),

word(noun,Word5).

What query do you have to pose in order to find out which sentences
the grammar can generate? List all sentences that this grammar can
generate in the order that Prolog will generate them in.

Exercise 2.4. Here are six Italian words: E
astante, astoria, baratto, cobalto, pistola, statale.

They are to be arranged, crossword puzzle fashion, in the following grid:

H1

H2

H3

V1 V2 V3

The following knowledge base represents a lexicon containing these
words:

word(astante, a,s,t,a,n,t,e).

word(astoria, a,s,t,o,r,i,a).

word(baratto, b,a,r,a,t,t,o).

word(cobalto, c,o,b,a,l,t,o).

word(pistola, p,i,s,t,o,l,a).

word(statale, s,t,a,t,a,l,e).

Write a predicatecrossword/6 that tells us how to fill in the grid. The
first three arguments should be the vertical words from left to right, and
the last three arguments the horizontal words from top to bottom.
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4 Practical Session
By this stage, you should have had your first taste of running Prolog
programs. The purpose of the second practical session is to suggest two
sets of keyboard exercises which will help you get familiar with the
way Prolog works. The first set has to do with unification, the second
with proof search.

First of all, start up your Prolog interpreter. That is, get ascreen
displaying the usual “I’m ready to start” prompt, which probably looks
something like:

?-

Verify your answers to Exercise 2.1, the unification examples. You don’t
need to consult any knowledge bases, simply ask Prolog directly whether
it is possible to unify the terms by using the built-in=/2 predicate. For
example, to test whetherfood(bread,X) and food(Y,sausage) unify,
just type in

food(bread,X) = food(Y,sausage).

and hit return.
You should also look at what happens when your Prolog implementation

attempts to unify terms that can’t be unified because it doesn’t carry out
an occurs check. For example, see what happens when you give it the
following query:

g(X,Y) = Y.

If it handles such examples, try the trickier one mentioned in the text:

X = f(X), Y = f(Y), X = Y.

Once you’ve experimented with that, it’s time to move on to something
new. There is another built-in Prolog predicate for answering queries
about unification, namely\=/2 (that is: the 2-place predicate\=). This
works in the opposite way to the=/2 predicate: it succeeds when its
two arguments donot unify. For example, the termsa and b do not
unify, which explains the following dialogue:

?- a \= b.

yes

Make sure you understand how\=/2 works by trying it out on (at
least) the following examples. But do this actively, not passively. That
is, after you type in an example, pause, and try to work out foryourself
what Prolog is going to respond. Only then hit return to see ifyou are
right.
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1. a \= a

2. ’a’ \= a

3. A \= a

4. f(a) \= a

5. f(a) \= A

6. f(A) \= f(a)

7. g(a,B,c) \= g(A,b,C)

8. g(a,b,c) \= g(A,C)

9. f(X) \= X

Thus the \=/2 predicate is (essentially) the negation of the=/2
predicate: a query involving one of these predicates will besatisfied
when the corresponding query involving the other is not, andvice versa.
This is the first example we have seen of a Prolog mechanism for
handling negation. We discuss Prolog negation (and its peculiarities) in
Chapter 10.

It’s time to move on and introduce one of the most helpful tools in
Prolog: trace. This is a built-in Prolog predicate that changes the way
Prolog runs: it forces Prolog to evaluate queries one step ata time,
indicating what it is doing at each step. Prolog waits for youto press
return before it moves to the next step, so that you can see exactly
what is going on. It was really designed to be used as a debugging
tool, but it’s also helpful when you’re learning Prolog: stepping through
programs usingtrace is an excellentway of learning how Prolog proof
search works.

Let’s look at an example. In the text, we looked at the proof search
involved when we made the queryk(Y) to the following knowledge
base:

f(a).

f(b).

g(a).

g(b).

h(b).

k(X):- f(X), g(X), h(X).
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Suppose this knowledge base is in fileproof.pl. We first consult it:

?- [proof].

yes

We then typetrace, followed by a full stop, and hit return:

?- trace.

yes

Prolog is now in trace mode, and will evaluate all queries step by step.
For example, if we pose the queryk(X), and then hit return every time
Prolog comes back with a?, we obtain (something like) the following:

[trace] 2 ?- k(X).

Call: (6) k(_G34) ?

Call: (7) f(_G34) ?

Exit: (7) f(a) ?

Call: (7) g(a) ?

Exit: (7) g(a) ?

Call: (7) h(a) ?

Fail: (7) h(a) ?

Fail: (7) g(a) ?

Redo: (7) f(_G34) ?

Exit: (7) f(b) ?

Call: (7) g(b) ?

Exit: (7) g(b) ?

Call: (7) h(b) ?

Exit: (7) h(b) ?

Exit: (6) k(b) ?

X = b

yes

Study this carefully. That is, try doing the same thing yourself, and
relate this output to the discussion of the example in the text, and in
particular, to the nodes in the search tree. To get you started, we’ll
remark that the third line is where the variable in the query is (wrongly)
instantiated toa. The first line markedfail is where Prolog realises
it’s taken the wrong path and starts to backtrack, and the line marked
redo is where it tries alternatives for the goalf(_G34).
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While learning Prolog, use trace, and use it heavily. It’s a great way
to learn. Oh yes: you also need to know how to turn trace off. Simply
type notrace (followed by a full stop) and hit return:

?- notrace.

yes





Chapter 3

Recursion

This chapter has two main goals:

1. To introduce recursive definitions in Prolog.

2. To show that there can be mismatches
between the declarative meaning of a Prolog
program, and its procedural meaning.
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1 Recursive Definitions
Predicates can be defined recursively. Roughly speaking, a predicate is
recursively defined if one or more rules in its definition refers to itself.

Example 1: Eating

Consider the following knowledge base:

is_digesting(X,Y) :- just_ate(X,Y).

is_digesting(X,Y) :-

just_ate(X,Z),

is_digesting(Z,Y).

just_ate(mosquito,blood(john)).

just_ate(frog,mosquito).

just_ate(stork,frog).

At first glance this seems pretty ordinary: it’s just a knowledge
base containing three facts and two rules. But the definitionof the
is_digesting/2 predicate is recursive. Note thatis_digesting/2 is
(at least partially) defined in terms of itself, for theis_digesting/2
functor occurs in both the head and body of the second rule. Crucially,
however, there is an ‘escape’ from this circularity. This isprovided by
the just_ate/2 predicate, which occurs in the first rule. (Significantly,
the body of the first rule makes no mention ofis_digesting/2.)
Let’s now consider both the declarative and procedural meanings of this
definition.

The word “declarative” is used to talk about the logical meaning of
Prolog knowledge bases. That is, the declarative meaning ofa Prolog
knowledge base is simply “what it says”, or “what it means, ifwe read
it as a collection of logical statements”. And the declarative meaning of
this recursive definition is fairly straightforward. The first clause (the
escape clause, the one that is not recursive, or as we shall usually call
it, the base clause), simply says that:if X has just eatenY, then X is
now digestingY. This is obviously a sensible definition.

So what about the second clause, the recursive clause? This says that:
if X has just eatenZ and Z is digestingY, then X is digestingY, too.
Again, this is obviously a sensible definition.

So now we know what this recursive definition says, but what happens
when we pose a query that actually needs to use this definition? That
is, what does this definition actually do? To use the normal Prolog
terminology, what is its procedural meaning?
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This is also reasonably straightforward. The base rule is like all the
earlier rules we’ve seen. That is, if we ask whetherX is digesting Y,
Prolog can use this rule to ask instead the question: hasX just eatenY?

What about the recursive clause? This gives Prolog another strategy
for determining whetherX is digesting Y: it can try to find someZ
such that X has just eatenZ, and Z is digesting Y. That is, this rule
lets Prolog break the task apart into two subtasks. Hopefully, doing so
will eventually lead to simple problems which can be solved by simply
looking up the answers in the knowledge base. The following picture
sums up the situation:

X Y X Z Y

just ate

is digesting is digesting

just ate is digesting

Let’s see how this works. If we pose the query:

?- is_digesting(stork,mosquito).

then Prolog goes to work as follows. First, it tries to make use of the
first rule listed concerningis_digesting; that is, the base rule. This
tells it that X is digestingY if X just ate Y, By unifying X with stork

and Y with mosquito it obtains the following goal:

just_ate(stork,mosquito).

But the knowledge base doesn’t contain the information thatthe stork
just ate the mosquito, so this attempt fails. So Prolog next tries to
make use of the second rule. By unifyingX with stork and Y with
mosquito it obtains the following goals:

just_ate(stork,Z),

is_digesting(Z,mosquito).

That is, to showis_digesting(stork,mosquito), Prolog needs to
find a value forZ such that, firstly,

just_ate(stork,Z).

and secondly,

is_digesting(Z,mosquito).

And there is such a value forZ, namely frog. It is immediate that
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just_ate(stork,frog).

will succeed, for this fact is listed in the knowledge base. And deducing

is_digesting(frog,mosquito).

is almost as simple, for the first clause ofis_digesting/2 reduces this
goal to deducing

just_ate(frog,mosquito).

and this is a fact listed in the knowledge base.
Well, that’s our first example of a recursive rule definition.We’re

going to learn a lot more about them, but one very practical remark
should be made right away. Hopefully it’s clear that when youwrite a
recursive predicate, it should always have at least two clauses: a base
clause (the clause that stops the recursion at some point), and one that
contains the recursion. If you don’t do this, Prolog can spiral off into
an unending sequence of useless computations. For example,here’s an
extremely simple example of a recursive rule definition:

p :- p.

That’s it. Nothing else. It’s beautiful in its simplicity. And from
a declarative perspective it’s an extremely sensible (if rather boring)
definition: it says “if property p holds, then property p holds”. You
can’t argue with that.

But from a procedural perspective, this is a wildly dangerous rule. In
fact, we have here the ultimate in dangerous recursive rules: exactly the
same thing on both sides, and no base clause to let us escape. For
consider what happens when we pose the following query:

?- p.

Prolog asks itself: “How do I provep?” and it realises, “Hey, I’ve got
a rule for that! To provep I just need to provep!”. So it asks itself
(again): “How do I provep?” and it realises, “Hey, I’ve got a rule for
that! To provep I just need to provep!”. So it asks itself (yet again):
“How do I prove p?” and it realises, “Hey, I’ve got a rule for that! To
prove p I just need to provep!” and so on and so forth.

If you make this query, Prolog won’t answer you: it will head off,
looping desperately away in an unending search. That is, it won’t
terminate, and you’ll have to interrupt it. Of course, if youuse trace,
you can step through one step at a time, until you get sick of watching
Prolog loop.
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Example 2: Descendant

Now that we know something aboutwhat recursion in Prolog involves,
it is time to askwhy it is so important. Actually, this is a question that
can be answered on a number of levels, but for now, let’s keep things
fairly practical. So: when it comes to writing useful Prologprograms,
are recursive definitions really so important? And if so, why?

Let’s consider an example. Suppose we have a knowledge base
recording facts about the child relation:

child(bridget,caroline).

child(caroline,donna).

That is, Caroline is a child of Bridget, and Donna is a child ofCaroline.
Now suppose we wished to define the descendant relation; thatis, the
relation of being a child of, or a child of a child of, or a childof a
child of a child of, and so on. Here’s a first attempt to do this.We
could add the following twonon-recursive rules to the knowledge base:

descend(X,Y) :- child(X,Y).

descend(X,Y) :- child(X,Z),

child(Z,Y).

Now, fairly obviously these definitions work up to a point, but they
are clearly limited: they only define the concept of descendant-of for
two generations or less. That’s ok for the above knowledge base, but
suppose we get some more information about the child-of relation and
we expand our list of child-of facts to this:

child(anne,bridget).

child(bridget,caroline).

child(caroline,donna).

child(donna,emily).

Now our two rules are inadequate. For example, if we pose the
queries

?- descend(anne,donna).

or

?- descend(bridget,emily).

we get the answer no, which isnot what we want. Sure, we could ‘fix’
this by adding the following two rules:



52 Learn Prolog Now!

descend(X,Y) :- child(X,Z_1),

child(Z_1,Z_2),

child(Z_2,Y).

descend(X,Y) :- child(X,Z_1),

child(Z_1,Z_2),

child(Z_2,Z_3),

child(Z_3,Y).

But, let’s face it, this is clumsy and hard to read. Moreover,if we
add further child-of facts, we could easily find ourselves having to add
more and more rules as our list of child-of facts grow, rules like:

descend(X,Y) :- child(X,Z_1),

child(Z_1,Z_2),

child(Z_2,Z_3),

.

.

.

child(Z_17,Z_18).

child(Z_18,Z_19).

child(Z_19,Y).

This is not a particularly pleasant (or sensible) way to go!
But we don’t need to do this at all. We can avoid having to use

ever longer rules entirely. The following recursive predicate definition
fixes everything exactly the way we want:

descend(X,Y) :- child(X,Y).

descend(X,Y) :- child(X,Z),

descend(Z,Y).

What does this say? The declarative meaning of the base clause is: if
Y is a child of X, then Y is a descendant ofX. Obviously sensible. So
what about the recursive clause? Its declarative meaning is: if Z is a
child of X, and Y is a descendant ofZ, then Y is a descendant ofX.
Again, this is obviously true.

So let’s now look at the procedural meaning of this recursivepredicate,
by stepping through an example. What happens when we pose thequery:

descend(anne,donna)

Prolog first tries the first rule. The variableX in the head of the rule is
unified with anne and Y with donna and the next goal Prolog tries to
prove is
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child(anne,donna)

This attempt fails, however, since the knowledge base neither contains
the fact child(anne,donna) nor any rules that would allow to infer
it. So Prolog backtracks and looks for an alternative way of proving
descend(anne,donna). It finds the second rule in the knowledge base
and now has the following subgoals:

child(anne,_633),

descend(_633,donna).

Prolog takes the first subgoal and tries to unify it with something in
the knowledge base. It finds the factchild(anne,bridget) and the
variable _633 gets instantiated tobridget. Now that the first subgoal
is satisfied, Prolog moves to the second subgoal. It has to prove

descend(bridget,donna)

This is the first recursive call of the predicatedescend/2. As before,
Prolog starts with the first rule, but fails, because the goal

child(bridget,donna)

cannot be proved. Backtracking, Prolog finds that there is a second
possibility to be checked fordescend(bridget,donna), namely the
second rule, which again gives Prolog two new subgoals:

child(bridget,_1785),

descend(_1785,donna).

The first one can be unified with the factchild(bridget,caroline)
of the knowledge base, so that the variable_1785 is instantiated with
caroline. Next Prolog tries to prove

descend(caroline,donna).

This is the second recursive call of predicatedescend/2. As before, it
tries the first rule first, obtaining the following new goal:

child(caroline,donna)

This time Prolog succeeds, sincechild(caroline,donna) is a
fact in the database. Prolog has found a proof for the goal
descend(caroline,donna) (the second recursive call). But this means
that descend(bridget,donna) (the first recursive call) is also true,
which means that our original querydescend(anne,donna) is true as
well.
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Here is the search tree for the querydescend(anne,donna). Make
sure that you understand how it relates to the discussion in the text; that
is, how Prolog traverses this search tree when trying to prove this query.

?- descend(anne,donna)

?- child(anne,donna)

†
?- child(anne, G43),

descend( G43,donna)

?- descend(bridget,donna)

G43 = bridget

?- child(bridget,donna)

†
?- child(bridget, G44),

descend( G44,donna)

?- descend(caroline,donna)

G44 = caroline

?- child(caroline,donna)

It should be obvious from this example that no matter how many
generations of children we add, we will always be able to workout the
descendant relation. That is, the recursive definition is both general and
compact: it containsall the information in the non-recursive rules, and
much more besides. The non-recursive rules only defined the descendant
concept up to some fixed number of generations: we would need to write
down infinitely many non-recursive rules if we wanted to capture this
concept fully, and of course that’s impossible. But, in effect, that’s what
the recursive rule does for us: it bundles up the informationneeded to
cope with arbitrary numbers of generations into just three lines of code.

Recursive rules are really important. They enable to pack anenormous
amount of information into a compact form and to define predicates in
a natural way. Most of the work you will do as a Prolog programmer
will involve writing recursive rules.
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Example 3: Successor

In the previous chapter we remarked that building structurethrough
unification is a key idea in Prolog programming. Now that we know
about recursion, we can give more interesting illustrations of this.

Nowadays, when human beings write numerals, they usually use
decimal notation (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, and
so on) but as you probably know, there are many other notations.
For example, because computer hardware is generally based on digital
circuits, computers usually usebinary notation to represent numerals (0,
1, 10, 11, 100, 101, 110, 111, 1000, and so on), for the 0 can be
implemented as a switch being off, the 1 as a switch being on. Other
cultures use different systems. For example, the ancient Babylonians
used a base 60 system, while the ancient Romans used a rather ad-hoc
system (I, II, III, IV, V, VI, VII, VIII, IX, X). This last example shows
that notational issues can be important. If you don’t believe this, try
figuring out a systematic way of doing long-division in Romannotation.
As you’ll discover, it’s a frustrating task. Apparently theRomans had a
group of professionals (analogs of modern accountants) whospecialised
in this.

Well, here’s yet another way of writing numerals, which is sometimes
used in mathematical logic. It makes use of just four symbols: 0, succ,
and the left and right parentheses. This style of numeral is defined by
the following inductive definition:

1. 0 is a numeral.

2. If X is a numeral, then so issucc(X).

As is probably clear,succ can be read as short forsuccessor. That
is, succ(X) represents the number obtained by adding one to the number
represented byX. So this is a very simple notation: it simply says that
0 is a numeral, and that all other numerals are built by stacking succ
symbols in front. (In fact, it’s used in mathematical logic because of this
simplicity. Although it wouldn’t be pleasant to do household accounts in
this notation, it is a very easy notation to prove thingsabout.)

Now, by this stage it should be clear that we can turn this definition
into a Prolog program. The following knowledge base does this:

numeral(0).

numeral(succ(X)) :- numeral(X).

So if we pose queries like
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numeral(succ(succ(succ(0)))).

we get the answer yes.
But we can do some more interesting things. Consider what happens

when we pose the following query:

numeral(X).

That is, we’re saying “Ok, show me some numerals”. Then we canhave
the following dialogue with Prolog:

X = 0 ;

X = succ(0) ;

X = succ(succ(0)) ;

X = succ(succ(succ(0))) ;

X = succ(succ(succ(succ(0)))) ;

X = succ(succ(succ(succ(succ(0))))) ;

X = succ(succ(succ(succ(succ(succ(0)))))) ;

X = succ(succ(succ(succ(succ(succ(succ(0))))))) ;

X = succ(succ(succ(succ(succ(succ(succ(succ(0))))))))

yes

Yes, Prolog is counting: but what’s really important ishow it’s doing
this. Quite simply, it’s backtracking through the recursive definition,
and actuallybuilding numerals using unification. This is an instructive
example, and it is important that you understand it. The bestway to do
so is to sit down and try it out, withtrace turned on.

Building and binding. Recursion, unification, and proof search. These
are ideas that lie at the heart of Prolog programming. Whenever
we have to generate or analyse recursively structured objects (such as
these numerals) the interplay of these ideas makes Prolog a powerful
tool. For example, in the next chapter we shall introduce lists, an
extremely important recursive data structure, and we will see that Prolog
is a natural list processing language. Many applications (computational
linguistics is a prime example) make heavy use of recursively structured
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objects, such as trees and feature structures. So it’s not particularly
surprising that Prolog has proved useful in such applications.

Example 4: Addition

As a final example, let’s see whether we can use the representation of
numerals that we introduced in the previous section for doing simple
arithmetic. Let’s try to define addition. That is, we want to define a
predicateadd/3 which when given two numerals as the first and second
argument returns the result of adding them up as its third argument. For
example:

?- add(succ(succ(0)),succ(succ(0)),

succ(succ(succ(succ(0))))).

yes

?- add(succ(succ(0)),succ(0),Y).

Y = succ(succ(succ(0)))

There are two things which are important to notice:

1. Whenever the first argument is0, the third argument has to be the
same as the second argument:

?- add(0,succ(succ(0)),Y).

Y = succ(succ(0))

?- add(0,0,Y).

Y = 0

This is the case that we want to use for the base clause.

2. Assume that we want to add the two numeralsX and Y (for
examplesucc(succ(succ(0))) and succ(succ(0))) and that X
is not 0. Now, if X1 is the numeral that has onesucc functor
less thanX (that is, succ(succ(0)) in our example) and if we
know the result – let’s call itZ – of adding X1 and Y (namely
succ(succ(succ(succ(0))))), then it is very easy to compute
the result of addingX and Y: we just have to add onesucc-functor
to Z. This is what we want to express with the recursive clause.

Here is the predicate definition that expresses exactly whatwe just
said:

add(0,Y,Y).

add(succ(X),Y,succ(Z)) :-

add(X,Y,Z).
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So what happens, if we give Prolog this predicate definition and then
ask:

?- add(succ(succ(succ(0))), succ(succ(0)), R).

Let’s go step by step through the way Prolog processes this query. The
trace and search tree for the query are given below.

The first argument is not0, which means that only the second clause
for add/3 can be used. This leads to a recursive call ofadd/3.
The outermostsucc functor is stripped off the first argument of the
original query, and the result becomes the first argument of the recursive
query. The second argument is passed on unchanged to the recursive
query, and the third argument of the recursive query is a variable, the
internal variable _G648 in the trace given below. Note that_G648
is not instantiated yet. However it shares values withR (the variable
that we used as the third argument in the original query) because R

was instantiated tosucc(_G648) when the query was unified with the
head of the second clause. But that means thatR is not a completely
uninstantiated variable anymore. It is now a complex term, that has a
(uninstantiated) variable as its argument.

The next two steps are essentially the same. With every step the
first argument becomes one layer ofsucc smaller; both the trace and
the search tree given below show this nicely. At the same time, a
succ functor is added toR at every step, but always leaving the
innermost variable uninstantiated. After the first recursive call R is
succ(_G648). After the second recursive call,_G648 is instantiated with
succ(_G650), so thatR is succ(succ(_G650). After the third recursive
call, _G650 is instantiated withsucc(_G652) and R therefore becomes
succ(succ(succ(_G652))). The search tree shows this step by step
instantiation.

At this stage all succ functors have been stripped off the first
argument and we can apply the base clause. The third argumentis
equated with the second argument, so the ‘hole’ (the uninstantiated
variable) in the complex termR is finally filled, and we are through.

Here’s the complete trace of our query:

Call: (6) add(succ(succ(succ(0))), succ(succ(0)), R)

Call: (7) add(succ(succ(0)), succ(succ(0)), _G648)

Call: (8) add(succ(0), succ(succ(0)), _G650)

Call: (9) add(0, succ(succ(0)), _G652)
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Exit: (9) add(0, succ(succ(0)), succ(succ(0)))

Exit: (8) add(succ(0), succ(succ(0)), succ(succ(succ(0))))

Exit: (7) add(succ(succ(0)), succ(succ(0)),

succ(succ(succ(succ(0)))))

Exit: (6) add(succ(succ(succ(0))), succ(succ(0)),

succ(succ(succ(succ(succ(0))))))

And here’s the search tree:

?- add(succ(succ(succ(0))), succ(succ(0)), R)

?- add(succ(succ(0)), succ(succ(0)), G648)

R = succ( G648)

?- add(succ(0), succ(succ(0)), G650)

G648 = succ( G650)

?- add(0, succ(succ(0)), G652)

G650 = succ( G652)

G652 = succ(succ(0))

2 Rule Ordering, Goal Ordering, and Termination
Prolog was the first reasonably successful attempt to createa logic
programming language. Underlying logic programming is a simple (and
seductive) vision: the task of the programmer is simply todescribe
problems. The programmer should write down (in the languageof logic)
a declarative specification (that is: a knowledge base), which describes
the situation of interest. The programmer shouldn’t have totell the
computer what to do. To get information, he or she simply asks the
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questions. It’s up to the logic programming system to figure out how to
get the answer.

Well, that’s the idea, and it should be clear that Prolog has taken
some important steps in this direction. But Prolog isnot, repeatnot, a
full logic programming language. If you only think about thedeclarative
meaning of a Prolog program, you are in for a very tough time. As
we learned in the previous chapter, Prolog has a very specificway of
working out the answers to queries: it searches the knowledge base
from top to bottom, clauses from left to right, and uses backtracking to
recover from bad choices. These procedural aspects have an important
influence on what actually happens when you make a query. We have
already seen a dramatic example of a mismatch between the procedural
and declarative meaning of a knowledge base (remember thep:- p

program?), and as we shall now see, it is easy to define knowledge
bases which (read logically) describe the same situations,but which
behave very differently. Let’s consider the matter.

Recall our earlier descendant program (let’s call itdescend1.pl):

child(anne,bridget).

child(bridget,caroline).

child(caroline,donna).

child(donna,emily).

descend(X,Y) :- child(X,Y).

descend(X,Y) :- child(X,Z),

descend(Z,Y).

We’ll make one change to it, and call the resultdescend2.pl:

child(anne,bridget).

child(bridget,caroline).

child(caroline,donna).

child(donna,emily).

descend(X,Y) :- child(X,Z),

descend(Z,Y).

descend(X,Y) :- child(X,Y).

All we have done is change the rule order. So if we read the program
as a purely logical definition, nothing has changed. But doesthe change
give rise to procedural differences? Yes, but nothing significant. For
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example, if you work through the examples you will see that the first
solution thatdescend1.pl finds is

X = anne

Y = bridget

whereas the first solution thatdescend2.pl finds is

X = anne

Y = emily

But (as you should check) both programs generate exactly thesame
answers, they merely find them in a different order. And this is a
general point. Roughly speaking (we’ll add a caveat later on) changing
the order of rules in a Prolog program does not change (up to the order
in which solutions are found) the program’s behaviour.

So let’s move on. We’ll make one small change todescend2.pl,
and call the resultdescend3.pl:

child(anne,bridget).

child(bridget,caroline).

child(caroline,donna).

child(donna,emily).

descend(X,Y) :- descend(Z,Y),

child(X,Z).

descend(X,Y) :- child(X,Y).

Note the difference. Here we’ve changed the goal orderwithin a rule,
not the rule order. Now, once again, if we read the program as a
purely logical definition, nothing has changed; it means thesame thing
as the previous two versions. But this time the program’s behaviour has
changed dramatically. For example, if you pose the query

descend(anne,emily).

you will get an error message (“out of local stack”, or something
similar). Prolog is looping. Why? Well, in order to satisfy the query
descend(anne,emily) Prolog uses the first rule. This means that its
next goal will be to satisfy the query

descend(W1,emily)

for some new variableW1. But to satisfy this new goal, Prolog again
has to use the first rule, and this means that its next goal is going to be
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descend(W2,emily)

for some new variableW2. And of course, this in turn means that its next
goal is going to bedescend(W3,emily) and thendescend(W4,emily),
and so on. That is, the (at first glance innocuous) change in the goal
order has resulted in procedural disaster. To use the standard terminology,
we have here a classic example of a left recursive rule, that is, a rule
where the leftmost item of the body is identical (modulo the choice of
variables) with the rule’s head. As our example shows, such rules easily
give rise to non-terminating computations. Goal order, andin particular
left recursion, is the root of all evil when it comes to non-termination.

Still, as we said earlier, we need to make one small caveat about
rule ordering. We said earlier that rule ordering only changes the order
in which solutions are found. However this may not be true if we are
working with non-terminating programs. To see this, consider the fourth
(and last) variant of our descendant program, namelydescend4.pl:

child(anne,bridget).

child(bridget,caroline).

child(caroline,donna).

child(donna,emily).

descend(X,Y) :- child(X,Y).

descend(X,Y) :- descend(Z,Y),

child(X,Z).

This program isdescend3.pl with the rule ordering reversed. Now
(once again) this program has the same declarative meaning as the other
variants, but it is also procedurally different from its relatives. First, and
most obviously, it is very different procedurally from bothdescend1.pl
and descend2.pl. In particular, because it contains a left recursive rule,
this new program does not terminate on some input. For example (just
like descend3.pl) this new program does not terminate when we pose
the query

descend(anne,emily).

But descend4.pl is not procedurally identical todescend3.pl. The
rule ordering reversal does make a difference. For example,descend3.pl

will not terminate if we pose the query

descend(anne,bridget).
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However descend4.pl will terminate in this case, for the rule reversal
enables it to apply the non-recursive rule and halt. So when it comes to
non-terminating programs, rule ordering changes can lead to some extra
solutions being found. Nonetheless, goal ordering, not rule ordering, is
what is truly procedurally significant. To ensure termination, we need to
pay attention to the order of goals within the bodies of rules. Tinkering
with rule orderings does not get to grips with the roots of termination
problems — at best it can yield some extra solutions.

Summing up, our four variant descendant programs are Prolog
knowledge bases which describe exactly the same situations, but behave
differently. The difference in behaviour betweendescend1.pl and
descend2.pl (which differ only in the way rules are ordered) is
relatively minor: they generate the same solutions, but in adifferent order.
But descend3.pl and descend4.pl are procedurally very different from
their two cousins, and this is because they differ from them in the way
their goals are ordered. In particular, both these variantscontain left
recursive rules, and in both cases this leads to non-terminating behaviour.
The change in rule ordering betweendescend3.pl and descend4.pl

merely means thatdescend4.pl will terminate in some cases where
descend3.pl will not.

What are the ramifications of our discussion for the practicalities
of producing working Prolog programs? It’s probably best tosay the
following. Often you can get the overall idea (the big picture) of how
to write the program by thinking declaratively, that is, by thinking in
terms of describing the problem accurately. This is an excellent way to
approach problems, and certainly the one most in keeping with the spirit
of logic programming. But once you’ve done that, you need to think
about how Prolog will work with knowledge bases you have written.
In particular, to ensure termination, you need to check thatthe goal
orderings you have given are sensible. The basic rule of thumb is never
to write as the leftmost goal of the body something that is identical
(modulo variable names) with the goal given in the head. Rather, place
such goals (which trigger recursive calls) as far as possible towards the
right of the tail. That is, place them after the goals which test for the
various (non-recursive) termination conditions. Doing this gives Prolog a
sporting chance of fighting it’s way through your recursive definitions to
find solutions.
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3 Exercises

Exercise 3.1. In the text, we discussed the predicateE

descend(X,Y) :- child(X,Y).

descend(X,Y) :- child(X,Z),

descend(Z,Y).

Suppose we reformulated this predicate as follows:

descend(X,Y) :- child(X,Y).

descend(X,Y) :- descend(X,Z),

descend(Z,Y).

Would this be problematic?

Exercise 3.2. Do you know these wooden Russian dolls (MatryoshkaE
dolls) where the smaller ones are contained in bigger ones? Here is a
schematic picture:

katarina
olga
natasha
irina

First, write a knowledge base using the predicatedirectlyIn/2
which encodes which doll is directly contained in which other doll.
Then, define a recursive predicatein/2, that tells us which doll is
(directly or indirectly) contained in which other dolls. For example,
the query in(katarina,natasha) should evaluate to true, while
in(olga, katarina) should fail.

Exercise 3.3. We have the following knowledge base:E

directTrain(saarbruecken,dudweiler).

directTrain(forbach,saarbruecken).

directTrain(freyming,forbach).

directTrain(stAvold,freyming).

directTrain(fahlquemont,stAvold).

directTrain(metz,fahlquemont).

directTrain(nancy,metz).
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That is, this knowledge base holds facts about towns it is possible to
travel between by taking adirect train. But of course, we can travel
further by chaining together direct train journeys. Write arecursive
predicate travelFromTo/2 that tells us when we can travel by train
between two towns. For example, when given the query

travelFromTo(nancy,saarbruecken).

it should reply yes.

Exercise 3.4. Define a predicategreater_than/2 that takes two E
numerals in the notation that we introduced in the text (thatis, 0,
succ(0), succ(succ(0)), and so on) as arguments and decideswhether the
first one is greater than the second one. For example:

?- greater_than(succ(succ(succ(0))),succ(0)).

yes

?- greater_than(succ(succ(0)),succ(succ(succ(0)))).

no

Exercise 3.5. Binary trees are trees where all internal nodes have E
exactly two children. The smallest binary trees consist of only one
leaf node. We will represent leaf nodes asleaf(Label). For
instance, leaf(3) and leaf(7) are leaf nodes, and therefore small
binary trees. Given two binary treesB1 and B2 we can combine
them into one binary tree using the functortree/2 as follows:
tree(B1,B2). So, from the leavesleaf(1) and leaf(2) we can build
the binary treetree(leaf(1),leaf(2)). And from the binary trees
tree(leaf(1),leaf(2)) and leaf(4) we can build the binary tree
tree(tree(leaf(1), leaf(2)),leaf(4)).

Now, define a predicateswap/2, which produces the mirror image of
the binary tree that is its first argument. For example:

?- swap(tree(tree(leaf(1), leaf(2)), leaf(4)),T).

T = tree(leaf(4), tree(leaf(2), leaf(1))).

yes

4 Practical Session
By now, you should feel more at home with writing and running basic
Prolog programs. In this practical session we first suggest two series
of keyboard exercises which will help you get familiar with recursive
definitions in Prolog, and then give you some programming problems to
solve.
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First the keyboard exercises. As recursive programming is so
fundamental to Prolog, it is important that you have a firm grasp of
what it involves. In particular, it is important that you understand the
process of variable instantiation when recursive definitions are used, and
that you understand why the order of goals in rules can make the
difference between termination and non-termination. So:

1. Load descend1.pl, turn on trace, and pose the query
descend(anne,emily). Count how many steps it takes Prolog
to work out the answer (that is, how many times do you have
to hit the return key). Now turntrace off and pose the query
descend(X,Y). How many answers are there?

2. Load descend2.pl. This is the variant ofdescend1.pl with the
rule order reversed. Repeat the traces you have carried out for
descend1.pl, and compare the results.

3. Load descend3.pl. This is the variant ofdescend2.pl in which
the goal order within the recursive rule is switched, resulting in a
left recursive rule. Because of this, even for such simple queries as
descend(anne,bridget), Prolog will not terminate. Step through
an example, usingtrace, to confirm this.

4. Load descend4.pl. This is the variant ofdescend3.pl obtained
by switching the rule order. Sodescend4.pl also contains a left
recursive rule, and does not terminate on all input. But it does
terminate on some input wheredescend3.pl does not. Which
extra solutions does it find?

As we said in the text, goal ordering, not rule ordering is what is
truly procedurally significant. But with non-terminating programs, rule
ordering changes can have unexpected effects. Recall the successor
program discussed in the text (let’s call itnumeral1.pl):

numeral(0).

numeral(succ(X)) :- numeral(X).

Let’s swap the order of the two clauses, and call the resultnumeral2.pl:

numeral(succ(X)) :- numeral(X).

numeral(0).

Clearly the declarative, or logical, content of this program is exactly the
same as the earlier version. But what are the procedural differences, if
any?
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1. Create a file containingnumeral2.pl, load it, and investigate what
happens if we pose queries aboutspecific numerals. For example,
suppose we ask:

numeral(succ(succ(succ(0)))).

Do numeral1.pl and numeral2.pl behave in the same way on
such input?

2. Second, look at what happens if we try togeneratenumerals, that
is, suppose we pose the query

numeral(X).

Do the programs display identical behaviour?

Here are some programs for you to try your hand at.

1. Imagine that the following knowledge base describes a maze. The
facts determine which points are connected, that is, from which
points you can get to which other points in one step. Furthermore,
imagine that all paths are one-way streets, so that you can only
walk them in one direction. So, you can get from point 1 to point
2, but not the other way round.

connected(1,2).

connected(3,4).

connected(5,6).

connected(7,8).

connected(9,10).

connected(12,13).

connected(13,14).

connected(15,16).

connected(17,18).

connected(19,20).

connected(4,1).

connected(6,3).

connected(4,7).

connected(6,11).

connected(14,9).

connected(11,15).

connected(16,12).

connected(14,17).

connected(16,19).
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Write a predicatepath/2 that tells you from which points in the
maze you can get to which other points when chaining together
connections given in the above knowledge base. Can you get from
point 5 to point 10? Which other point can you get to when
starting at point 1? And which points can be reached from point
13?

2. We are given the following knowledge base of travel information:

byCar(auckland,hamilton).

byCar(hamilton,raglan).

byCar(valmont,saarbruecken).

byCar(valmont,metz).

byTrain(metz,frankfurt).

byTrain(saarbruecken,frankfurt).

byTrain(metz,paris).

byTrain(saarbruecken,paris).

byPlane(frankfurt,bangkok).

byPlane(frankfurt,singapore).

byPlane(paris,losAngeles).

byPlane(bangkok,auckland).

byPlane(singapore,auckland).

byPlane(losAngeles,auckland).

Write a predicatetravel/2 which determines whether it is possible
to travel from one place to another by chaining together car,train,
and plane journeys. For example, your program should answeryes
to the querytravel(valmont,raglan).

3. So, by usingtravel/2 to query the above database, you can find
out that it is possible to go from Valmont to Raglan. If you are
planning such a voyage, that’s already something useful to know,
but you would probably prefer to have the precise route from
Valmont to Raglan. Write a predicatetravel/3 which tells you
which route to take when travelling from one place to another. For
example, the program should respond

X = go(valmont,metz,

go(metz,paris,

go(paris,losAngeles)))

to the querytravel(valmont,losAngeles,X).
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4. Extend the predicatetravel/3 so that it not only tells you the
route to take to get from one place to another, but alsohow you
have to travel. That is, the new program should let us know, for
each stage of the voyage, whether we need to travel by car, train,
or plane.





Chapter 4

Lists

This chapter has three main goals:

1. To introduce lists, an important recursive data
structure often used in Prolog programming.

2. To define the member/2 predicate, a funda-
mental Prolog tool for manipulating lists.

3. To introduce the idea of recursing down lists.
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1 Lists
As its name suggests, a list is just a plain old list of items. Slightly
more precisely, it is a finite sequence of elements. Here are some
examples of lists in Prolog:

[mia, vincent, jules, yolanda]

[mia, robber(honey_bunny), X, 2, mia]

[]

[mia, [vincent, jules], [butch, girlfriend(butch)]]

[[], dead(z), [2, [b, c]], [], Z, [2, [b, c]]]

We can learn some important things from these examples.

1. We can specify lists in Prolog by enclosing the elements ofthe list
in square brackets (that is, the symbols[ and ]). The elements
are separated by commas. For example, the first list shown above,
[mia, vincent, jules, yolanda], is a list with four elements,
namely mia, vincent, jules, and yolanda. The length of a list
is the number of elements it has, so our first example is a list of
length four.

2. From[mia,robber(honey_bunny),X,2,mia], our second example,
we learn that all sorts of Prolog objects can be elements of a list.
The first element of this list ismia, an atom; the second element
is robber(honey_bunny), a complex term; the third element isX,
a variable; the fourth element is2, a number. Moreover, we also
learn that the same item may occur more than once in the same
list: for example, the fifth element of this list ismia, which is
same as the first element.

3. The third example shows that there is a special list, the empty list.
The empty list (as its name suggests) is the list that contains no
elements. What is the length of the empty list? Zero, of course
(for the length of a list is the number of members it contains,and
the empty list contains nothing).

4. The fourth example teaches us something extremely important:
lists can contain other lists as elements. For example, the second
element of
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[mia, [vincent, jules], [butch,girlfriend(butch)]

is [vincent,jules]. The third is [butch,girlfriend(butch)].

What is the length of the fourth list? The answer is: three. Ifyou
thought it was five (or indeed, anything else) you’re not thinking
about lists in the right way. The elements of the list are the
things between the outermost square brackets separated by commas.
So this list containsthree elements: the first element ismia, the
second element is[vincent, jules], and the third element is
[butch, girlfriend(butch)].

5. The last example mixes all these ideas together. We have here a
list which contains the empty list (in fact, it contains it twice), the
complex termdead(z), two copies of the list[2, [b, c]], and
the variableZ. Note that the third (and the last) elements are lists
which themselves contain lists (namely[b, c]).

Now for an important point. Any non-empty list can be thoughtof as
consisting of two parts: the head and the tail. The head is simply the
first item in the list; the tail is everything else. To put it more precisely,
the tail is the list that remains when we take the first elementaway;
that is, the tail of a list is always a list. For example, the head of

[mia, vincent, jules, yolanda]

is mia and the tail is [vincent, jules, yolanda]. Similarly, the
head of

[[], dead(z), [2, [b, c]], [], Z, [2, [b, c]]]

is [], and the tail is[dead(z), [2,[b,c]],[],Z,[2,[b, c]]]. And
what are the head and the tail of the list[dead(z)]? Well, the head is
the first element of the list, which isdead(z), and the tail is the list
that remains if we take the head away, which, in this case, is the empty
list [].

What about the empty list? It has neither a head nor a tail. That
is, the empty list has no internal structure; for Prolog,[] is a special,
particularly simple, list. As we shall learn when we start writing
recursive list processing programs, this fact plays an important role in
Prolog programming.

Prolog has a special built-in operator| which can be used to
decompose a list into its head and tail. It is important to getto know
how to use|, for it is a key tool for writing Prolog list manipulation
programs.
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The most obvious use of| is to extract information from lists. We
do this by using| together with unification. For example, to get hold
of the head and tail of[mia,vincent, jules,yolanda] we can pose
the following query:

?- [Head|Tail] = [mia, vincent, jules, yolanda].

Head = mia

Tail = [vincent,jules,yolanda]

yes

That is, the head of the list has become bound toHead and the tail of
the list has become bound toTail. Note that there is nothing special
about Head and Tail, they are simply variables. We could just as well
have posed the query:

?- [X|Y] = [mia, vincent, jules, yolanda].

X = mia

Y = [vincent,jules,yolanda]

yes

As we mentioned above, only non-empty lists have heads and tails.
If we try to use | to pull [] apart, Prolog will fail:

?- [X|Y] = [].

no

That is, Prolog treats[] as a special list. This observation is extremely
important. We’ll see why later.

Let’s look at some other examples. We can extract the head andtail
of the following list just as we saw above:

?- [X|Y] = [[], dead(z), [2, [b, c]], [], Z].

X = []

Y = [dead(z),[2,[b,c]],[],_7800]

Z = _7800

yes

That is: the head of the list is bound toX, the tail is bound toY. (We
also learn that Prolog has boundZ to the internal variable_7800.)
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But we can do a lot more with|; it really is a flexible tool. For
example, suppose we wanted to know what the firsttwo elements of the
list were, and also the remainder of the list after the secondelement.
Then we’d pose the following query:

?- [X,Y | W] = [[], dead(z), [2, [b, c]], [], Z].

X = []

Y = dead(z)

W = [[2,[b,c]],[],_8327]

Z = _8327

yes

That is, the head of the list is bound toX, the second element is
bound to Y, and the remainder of the list after the second element is
bound to W (that is, W is the list that remains when we take away the
first two elements). So| can not only be used to split a list into its
head and its tail, we can also use it to split a list at any point. To the
left of | we simply indicate how many elements we want to take away
from the front of the list, and then to right of the| we will get what
remains.

This is a good time to introduce the anonymous variable. Suppose
we were interested in getting hold of the second and fourth elements of
the list:

[[], dead(z), [2, [b, c]], [], Z].

Now, we could find out like this:

?- [X1,X2,X3,X4 | Tail] =

[[], dead(z), [2, [b, c]], [], Z].

X1 = []

X2 = dead(z)

X3 = [2,[b,c]]

X4 = []

Tail = [_8910]

Z = _8910

yes

Ok, we have got the information we wanted: the values we are
interested in are bound to the variablesX2 and X4. But we’ve got a
lot of other information too (namely the values bound toX1, X3 and
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Tail). And perhaps we’re not interested in all this other stuff. If so,
it’s a bit silly having to explicitly introduce variablesX1, X3 and Tail

to deal with it. And in fact, there is a simpler way to obtainonly the
information we want: we can pose the following query instead:

?- [_,X,_,Y|_] = [[], dead(z), [2, [b, c]], [], Z].

X = dead(z)

Y = []

Z = _9593

yes

The _ symbol (that is, underscore) is the anonymous variable. We
use it when we need to use a variable, but we’re not interestedin what
Prolog instantiates the variable to. As you can see in the above example,
Prolog didn’t bother telling us what_ was bound to. Moreover, note
that each occurrence of_ is independent: each is bound to something
different. This couldn’t happen with an ordinary variable of course, but
then the anonymous variable isn’t meant to be ordinary. It’ssimply a
way of telling Prolog to bind something to a given position, completely
independently of any other bindings.

Let’s look at one last example. The third element of our working
example is a list (namely[2, [b, c]]). Suppose we wanted to extract
the tail of this internal list, and that we are not interestedin any other
information. How could we do this? As follows:

?- [_,_,[_|X]|_] =

[[], dead(z), [2, [b, c]], [], Z, [2, [b, c]]].

X = [[b,c]]

Z = _10087

yes

2 Member
It’s time to look at our first example of a recursive Prolog program for
manipulating lists. One of the most basic things we would like to know
is whether something is an element of a list or not. So let’s write a
program that, when given as inputs an arbitrary objectX and a list L,
tells us whether or notX belongs to L. The program that does this
is usually called member, and it is the simplest example of a Prolog
program that exploits the recursive structure of lists. Here it is:
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member(X,[X|T]).

member(X,[H|T]) :- member(X,T).

That’s all there is to it: one fact (namelymember(X,[X|T])) and one
rule (namely member(X,[H|T]) :- member(X,T)). But note that the
rule is recursive (after all, the functormember occurs in both the rule’s
head and body) and it is this that explains why such a short program is
all that is required. Let’s take a closer look.

We’ll start by reading the program declaratively. And read this way, it
is obviously sensible. The first clause (the fact) simply says: an object
X is a member of a list if it is the head of that list. Note that we used
the built-in | operator to state this (simple but important) principle about
lists.

What about the second clause, the recursive rule? This says:an object
X is member of a list if it is a member of the tail of the list. Again,
note that we used the| operator to state this principle.

Now, clearly this definition makes good declarative sense. But does
this program actuallydo what it is supposed to do? That is, will it really
tell us whether an objectX belongs to a listL? And if so, how exactly
does it do this? To answer such questions, we need to think about its
procedural meaning. Let’s work our way through a few examples.

Suppose we posed the following query:

?- member(yolanda,[yolanda,trudy,vincent,jules]).

Prolog will immediately answer yes. Why? Because it can unify
yolanda with both occurrences ofX in the first clause (the fact) in the
definition of member/2, so it succeeds immediately.

Next consider the following query:

?- member(vincent,[yolanda,trudy,vincent,jules]).

Now the first rule won’t help (vincent and yolanda are distinct atoms)
so Prolog goes to the second clause, the recursive rule. Thisgives
Prolog a new goal: it now has to see if

member(vincent,[trudy,vincent,jules]).

Once again the first clause won’t help, so Prolog goes (again)to the
recursive rule. This gives it a new goal, namely

member(vincent,[vincent,jules]).
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This time, the first clause does help, and the query succeeds.
So far so good, but we need to ask an important question. What

happens when we pose a query thatfails? For example, what happens
if we pose the query

member(zed,[yolanda,trudy,vincent,jules]).

Now, this should obviously fail (after all,zed is not on the list).
So how does Prolog handle this? In particular, how can we be sure
that Prolog really will stop, and sayno, instead going into an endless
recursive loop?

Let’s think this through systematically. Once again, the first clause
cannot help, so Prolog uses the recursive rule, which gives it a new goal

member(zed,[trudy,vincent,jules]).

Again, the first clause doesn’t help, so Prolog reuses the recursive rule
and tries to show that

member(zed,[vincent,jules]).

Similarly, the first rule doesn’t help, so Prolog reuses the second rule
yet again and tries the goal

member(zed,[jules]).

Again the first clause doesn’t help, so Prolog uses the secondrule,
which gives it the goal

member(zed,[])

And this is where things get interesting. Obviously the first clause can’t
help here. But note:the recursive rule can’t do anything more either.
Why not? Simple: the recursive rule relies on splitting the list into a
head and a tail, but as we have already seen, the empty listcan’t be
split up in this way. So the recursive rule cannot be applied either, and
Prolog stops searching for more solutions and announces no.That is, it
tells us thatzed does not belong to the list, which is just what it ought
to do.

We could summarise themember/2 predicate as follows. It is a
recursive predicate, which systematically searches down the length of the
list for the required item. It does this by stepwise breakingdown the
list into smaller lists, and looking at the first item of each smaller list.
This mechanism that drives this search is recursion, and thereason that
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this recursion is safe (that is, the reason it does not go on forever) is
that at the end of the line Prolog has to ask a question about the empty
list. The empty listcannot be broken down into smaller parts, and this
allows a way out of the recursion.

Well, we’ve now seen whymember/2 works, but in fact it’s far more
useful than the previous example might suggest. Up till now we’ve
only been using it to answer yes/no questions. But we can alsopose
questions containing variables. For example, we can have the following
dialog with Prolog:

member(X,[yolanda,trudy,vincent,jules]).

X = yolanda ;

X = trudy ;

X = vincent ;

X = jules ;

no

That is, Prolog has told us what every member of a list is. Thisis
an extremely common use ofmember/2. In effect, by using the variable
we are saying to Prolog: “Quick! Give me some element of the list!”.
In many applications we need to be able to extract members of alist,
and this is the way it is typically done.

One final remark. The way we definedmember/2 above is certainly
correct, but in one respect it is a little messy.

Think about it. The first clause is there to deal with the head of the
list. But although the tail is irrelevant to the first clause,we named the
tail using the variableT. Similarly, the recursive rule is there to deal
with the tail of the list. But although the head is irrelevanthere, we
named it using the variableH. These unnecessary variable names are
distracting: it’s better to write predicates in a way that focuses attention
on what is really important in each clause, and the anonymousvariable
gives us a nice way of doing this. That is, we can rewritemember/2 as
follows:

member(X,[X|_]).

member(X,[_|T]) :- member(X,T).



80 Learn Prolog Now!

This version is exactly the same, both declaratively and procedurally.
But it’s just that little bit clearer: when you read it, you are forced to
concentrate on what is essential.

3 Recursing down Lists
The member/2 predicate works by recursively working its way down a
list, doing something to the head, and then recursively doing the same
thing to the tail. Recursing down a list (or indeed, several lists) in this
way is extremely common in Prolog; so common, in fact, that itis
important that you really master the technique. So let’s look at another
example.

When working with lists, we often want to compare one list with
another, or to copy bits of one list into another, or to translate the
contents of one list into another, or something similar. Here’s an
example. Let’s suppose we need a predicatea2b/2 that takes two lists
as arguments, and succeeds if the first argument is a list ofas, and the
second argument is a list ofbs of exactly the same length. For example,
if we pose the following query

a2b([a,a,a,a],[b,b,b,b]).

we want Prolog to say yes. On the other hand, if we pose the query

a2b([a,a,a,a],[b,b,b]).

or the query

a2b([a,c,a,a],[b,b,5,4]).

we want Prolog to say no.
When faced with such tasks, often the best way to set about solving

them is to start by thinking about the simplest possible case. Now,
when working with lists, thinking about the simplest case often means
thinking about the empty list, and it certainly means this here. After
all: what is the shortest possible list ofas? It’s the empty list. Why?
Because it contains noas at all. And what is the shortest possible list
of bs? Again, the empty list: nobs whatsoever in that. So the most
basic information our definition needs to contain is

a2b([],[]).

This records the obvious fact that the empty list contains exactly as
many as as bs. But although obvious, this fact turns out to play an
important role in our program, as we shall see.
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So far so good: but how do we proceed? Here’s the idea: for
longer lists, think recursively. So: when shoulda2b/2 decide that two
non-empty lists are a list ofas and a list ofbs of exactly the same
length? Simple: when the head of the first list is ana, and the head of
the second list is ab, and a2b/2 decides that the two tails are lists of
as and bs of exactly the same length! This immediately gives us the
following rule:

a2b([a|Ta],[b|Tb]) :- a2b(Ta,Tb).

This says: thea2b/2 predicate should succeed if its first argument is a
list with head a, its second argument is a list with headb, and a2b/2

succeeds on the two tails.
Now, this definition make good sense declaratively. It is a simple and

natural recursive predicate, the base clause dealing with the empty list,
the recursive clause dealing with non-empty lists. But how does it work
in practice? That is, what is its procedural meaning? For example, if
we pose the query

a2b([a,a,a],[b,b,b]).

Prolog will say yes, which is what we want — butwhy exactly does
this happen?

Let’s work the example through. In this query, neither list is empty,
so the fact does not help. Thus Prolog goes on to try the recursive rule.
Now, the query does match the rule (after all, the head of the first list
is a and the head of the second isb) so Prolog now has a new goal,
namely

a2b([a,a],[b,b]).

Once again, the fact does not help with this, but the recursive rule can
be used again, leading to the following goal:

a2b([a],[b]).

Yet again the fact does not help, but the recursive rule does,so we get
the following goal:

a2b([],[]).

At last we can use the fact: this tells us that, yes, we really do have two
lists here that contain exactly the same number ofas and bs (namely,
none at all). And because this goal succeeds, this means thatthe goal

a2b([a],[b]).
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succeeds too. This in turn means that the goal

a2b([a,a],[b,b]).

succeeds, and thus that the original goal

a2b([a,a,a],[b,b,b]).

is satisfied.
We could summarise this process as follows. Prolog started with two

lists. It peeled the head off each of them, and checked that they were an
a and ab, respectively, as required. It then recursively analysed the tails
of both lists. That is, it worked its way down both tails simultaneously,
checking that at each stage the tails were headed by ana and ab. Why
did the process stop? Because at each recursive step we had towork
with shorter lists (namely the tails of the lists examined atthe previous
step) and eventually we ended up with empty lists. At this point, our
rather trivial looking fact was able to play a vital role: it said yes. This
halted the recursion, and ensured that the original query succeeded.

It’s is also important to think about what happens with queries that
fail. For example, if we pose the query

a2b([a,a,a,a],[b,b,b]).

Prolog will correctly say no. Why? because after carrying out the
peel-off-the-head-and-recursively-examine-the-tail process three times, it
will be left with the query

a2b([a],[]).

But this goal cannot be satisfied. And if we pose the query

a2b([a,c,a,a],[b,b,5,4]).

after carrying out the peel-off-the-head-and-recursively-examine-the-tail
process once, Prolog will have the goal

a2b([c,a,a],[b,5,4]).

and again, this cannot be satisfied.
Well, that’s how a2b/2 works in simple cases, but we haven’t

exhausted its possibilities yet. As always with Prolog, it’s a good idea
to investigate what happens when variables as used as input.And with
a2b/2 something interesting happens: it acts as a translator, translating
lists of as to lists of bs, and vice versa. For example the query

a2b([a,a,a,a],X).
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yields the response

X = [b,b,b,b].

That is, the list ofas has been translated to a list ofbs. Similarly, by
using a variable in the first argument position, we can use it to translate
lists of bs to lists of as:

a2b(X,[b,b,b,b]).

X = [a,a,a,a]

And of course, we can use variables in both argument positions:

a2b(X,Y).

Can you work out what happens in this case?
To sum up:a2b/2 is an extremely simple example of a program that

works by recursing its way down a pair of lists. But don’t be fooled by
its simplicity: the kind of programming it illustrates is fundamental to
Prolog. Both its declarative form (a base clause dealing with the empty
list, a recursive clause dealing with non-empty lists) and the procedural
idea it trades on (do something to the heads, and then recursively do the
same thing to the tails) come up again and again in Prolog programming.
In fact, in the course of your Prolog career, you’ll find that you’ll write
what is essentially thea2b/2 predicate, or a more complex variant of
it, many times over in many different guises.

4 Exercises

Exercise 4.1. How does Prolog respond to the following queries? E

1. [a,b,c,d] = [a,[b,c,d]].

2. [a,b,c,d] = [a|[b,c,d]].

3. [a,b,c,d] = [a,b,[c,d]].

4. [a,b,c,d] = [a,b|[c,d]].

5. [a,b,c,d] = [a,b,c,[d]].

6. [a,b,c,d] = [a,b,c|[d]].

7. [a,b,c,d] = [a,b,c,d,[]].

8. [a,b,c,d] = [a,b,c,d|[]].
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9. [] = _.

10. [] = [_].

11. [] = [_|[]].

Exercise 4.2. Which of the following are syntactically correct lists? IfE
the representation is correct, how many elements does the list have?

1. [1|[2,3,4]]

2. [1,2,3|[]]

3. [1|2,3,4]

4. [1|[2|[3|[4]]]]

5. [1,2,3,4|[]]

6. [[]|[]]

7. [[1,2]|4]

8. [[1,2],[3,4]|[5,6,7]]

Exercise 4.3. Write a predicatesecond(X,List) which checksE
whetherX is the second element ofList.

Exercise 4.4. Write a predicateswap12(List1,List2) which checksE
whether List1 is identical to List2, except that the first two elements
are exchanged.

Exercise 4.5. Suppose we are given a knowledge base with theE
following facts:

tran(eins,one).

tran(zwei,two).

tran(drei,three).

tran(vier,four).

tran(fuenf,five).

tran(sechs,six).

tran(sieben,seven).

tran(acht,eight).

tran(neun,nine).

Write a predicatelisttran(G,E) which translates a list of German
number words to the corresponding list of English number words. For
example:
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listtran([eins,neun,zwei],X).

should give:

X = [one,nine,two].

Your program should also work in the other direction. For example,
if you give it the query

listtran(X,[one,seven,six,two]).

it should return:

X = [eins,sieben,sechs,zwei].

(Hint: to answer this question, first ask yourself “How do I translate
the empty list of number words?”. That’s the base case. For non-empty
lists, first translate the head of the list, then use recursion to translate
the tail.)

Exercise 4.6. Write a predicatetwice(In,Out) whose left argument E
is a list, and whose right argument is a list consisting of every element
in the left list written twice. For example, the query

twice([a,4,buggle],X).

should return

X = [a,a,4,4,buggle,buggle]).

And the query

twice([1,2,1,1],X).

should return

X = [1,1,2,2,1,1,1,1].

(Hint: to answer this question, first ask yourself “What should happen
when the first argument is theempty list?”. That’s the base case. For
non-empty lists, think about what you should do with the head, and use
recursion to handle the tail.)

Exercise 4.7. Draw the search trees for the following three queries: E

?- member(a,[c,b,a,y]).

?- member(x,[a,b,c]).

?- member(X,[a,b,c]).

(Search trees were introduced in Chapter 2.)
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5 Practical Session
The purpose of Practical Session 4 is to help you get familiarwith the
idea of recursing down lists. We first suggest some traces foryou to
carry out, and then some programming exercises.

First, systematically carry out a number of traces ona2b/2 to make
sure you fully understand how it works. In particular:

1. Trace some examples, not involving variables, that succeed. For
example, trace the querya2b([a,a,a,a],[b,b,b,b]) and relate
the output to the discussion in the text.

2. Trace some simple examples that fail. Try examples involving
lists of different lengths (such asa2b([a,a,a,a],[b,b,b]))
and examples involving symbols other thana and b (such as
a2b([a,c,a,a],[b,b,5,4])).

3. Trace some examples involving variables. For example, try tracing
a2b([a,a,a,a],X) and a2b(X,[b,b,b,b]).

4. Make sure you understand what happens when both argumentsin
the query are variables. For example, carry out a trace on the
query a2b(X,Y).

5. Carry out a series of similar traces involvingmember/2. That
is, carry out traces involving simple queries that succeed (such
as member(a,[1,2,a,b])), simple queries that fail (such as
member(z,[1,2,a,b])), and queries involving variables (such
as member(X,[1,2,a,b])). In all cases, make sure that you
understand why the recursion halts.

Having done this, try the following.

1. Write a 3-place predicatecombine1 which takes three lists as
arguments and combines the elements of the first two lists into the
third as follows:

?- combine1([a,b,c],[1,2,3],X).

X = [a,1,b,2,c,3]

?- combine1([f,b,yip,yup],[glu,gla,gli,glo],Result).

Result = [f,glu,b,gla,yip,gli,yup,glo]
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2. Now write a 3-place predicatecombine2 which takes three lists
as arguments and combines the elements of the first two lists into
the third as follows:

?- combine2([a,b,c],[1,2,3],X).

X = [[a,1],[b,2],[c,3]]

?- combine2([f,b,yip,yup],[glu,gla,gli,glo],Result).

Result = [[f,glu],[b,gla],[yip,gli],[yup,glo]]

3. Finally, write a 3-place predicatecombine3 which takes three lists
as arguments and combines the elements of the first two lists into
the third as follows:

?- combine3([a,b,c],[1,2,3],X).

X = [j(a,1),j(b,2),j(c,3)]

?- combine3([f,b,yip,yup],[glu,gla,gli,glo],R).

R = [j(f,glu),j(b,gla),j(yip,gli),j(yup,glo)]

All three programs are pretty much the same asa2b/2 (though they
manipulate three lists, not two). That is, all three can be written
by recursing down the lists, doing something to the heads, and then
recursively doing the same thing to the tails. Indeed, once you have
written combine1, you just need to change what you do to the heads to
get combine2 and combine3.





Chapter 5

Arithmetic

This chapter has two main goals:

1. To introduce Prolog’s built-in abilities for
performing arithmetic.

2. To apply them to simple list processing
problems, using accumulators.
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1 Arithmetic in Prolog
Prolog provides a number of basic arithmetic tools for manipulating
integers (that is, numbers of the form ...-3, -2, -1, 0, 1, 2, 3, 4...). Most
Prolog implementation also provide tools for handling realnumbers (or
floating point numbers) such as 1.53 or6.35 × 105, but we’re not going
to discuss these, for they are not particularly useful for the symbolic
processing tasks discussed in this book. Integers, on the other hand,
are useful in connection with symbolic tasks (we use them to state the
length of lists, for example) so it is important to understand how to
work with them. We’ll start by looking at how Prolog handles the four
basic operations of addition, multiplication, subtraction, and division.

Arithmetic examples Prolog Notation
6 + 2 = 8 8 is 6+2.

6 ∗ 2 = 12 12 is 6*2.

6 − 2 = 4 4 is 6-2.

6 − 8 = −2 -2 is 6-8.

6 ÷ 2 = 3 3 is 6/2.

7 ÷ 2 = 3 3 is 7/2.

1 is the remainder when 7 is divided by 21 is mod(7,2).

Note that as we are working with integers, division gives us back an
integer answer. Thus7 ÷ 2 gives 3 as an answer, leaving remainder 1.

Posing the following queries yields the following responses:

?- 8 is 6+2.

yes

?- 12 is 6*2.

yes

?- -2 is 6-8.

yes

?- 3 is 6/2.

yes

?- 1 is mod(7,2).

yes

More importantly, we can work out the answers to arithmetic questions
by using variables. For example:
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?- X is 6+2.

X = 8

?- X is 6*2.

X = 12

?- R is mod(7,2).

R = 1

Moreover, we can use arithmetic operations when we define predicates.
Here’s a simple example. Let’s define a predicateadd_3_and_double/2

whose arguments are both integers. This predicate takes itsfirst argument,
adds three to it, doubles the result, and returns the number obtained as
the second argument. We define this predicate as follows:

add_3_and_double(X,Y) :- Y is (X+3)*2.

And indeed, this works:

?- add_3_and_double(1,X).

X = 8

?- add_3_and_double(2,X).

X = 10

One other thing. Prolog understands the usual conventions we use
for disambiguating arithmetical expressions. For example, when we write
3 + 2 × 4 we mean3 + (2 × 4) and not (3 + 2) × 4, and Prolog knows
this convention:

?- X is 3+2*4.

X = 11

2 A Closer Look
That’s the basics, but we need to know more. The most important to
grasp is this: +, *, -,÷ and mod do not carry out any arithmetic. In
fact, expressions such as3+2, 3-2 and 3*2 are simply terms. The
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functors of these terms are+, - and * respectively, and the arguments
are 3 and 2. Apart from the fact that the functors go between their
arguments (instead of in front of them) these are ordinary Prolog terms,
and unless we do something special, Prolog will not actuallydo any
arithmetic. In particular, if we pose the query

?- X = 3+2

we don’t get back the answerX=5. Instead we get back

X = 3+2

yes

That is, Prolog has simply unified the variableX to the complex term
3+2. It has not carried out any arithmetic. It has simply done what it
usually does when=/2 is used: performed unification.

Similarly, if we pose the query

?- 3+2*5 = X

we get the response

X = 3+2*5

yes

Again, Prolog has simply bound the variableX to the complex term
3+2*5. It did not evaluate this expression to 13.

To force Prolog to actually evaluate arithmetic expressions we have to
use

is

just as we did in our earlier examples. In fact,is does something very
special: it sends a signal to Prolog that says “Hey! Don’t treat this
expression as an ordinary complex term! Call up your built-in arithmetic
capabilities and carry out the calculations!”

In short, is forces Prolog to act in an unusual way. Normally
Prolog is quite happy just unifying variables to structures: that’s its job,
after all. Arithmetic is something extra that has been bolted on to the
basic Prolog engine because it is useful. Unsurprisingly, there are some
restrictions on this extra ability, and we need to know what they are.

For a start, the arithmetic expressions to be evaluated mustbe on the
right hand side ofis. In our earlier examples we carefully posed the
query
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?- X is 6+2.

X = 8

which is the right way to do it. If instead we had asked

6+2 is X.

we would have got a message sayinginstantiation_error, or
something similar.

Moreover, although we are free to use variables on the right hand
side of is, when we actually carry out evaluation, the variable must
already have been instantiated to a variable-free arithmetic expression.
If the variable is uninstantiated, or if it is instantiated to something
other than an integer, we will get some sort ofinstantiation_error

message. This is because arithmetic isn’t performed using Prolog’s usual
unification and knowledge base search mechanisms: it’s doneby calling
up a special black box which knows about integer arithmetic.If we
hand the black box the wrong kind of data, it’s going to complain.

Here’s an example. Recall our “add 3 and double it” predicate.

add_3_and_double(X,Y) :- Y is (X+3)*2.

When we described this predicate, we carefully said that it added 3 to its
first argument, doubled the result, and returned the answer in its second
argument. For example,add_3_and_double(3,X) returns X = 12. We
didn’t say anything about using this predicate in the reverse direction.
For example, we might hope that posing the query

?- add_3_and_double(X,12).

would return the answerX=3. But it doesn’t. Instead we get the
instantiation_error message. Why? Well, when we pose the query
this way round, we are asking Prolog to evaluate12 is (X+3)*2, which
it can’t do as X is not instantiated.

Two final remarks. As we’ve already mentioned, for Prolog3 + 2

is just a term. In fact, for Prolog, it reallyis the term +(3,2). The
expression3 + 2 is just a user-friendly notation that’s nicer for us to
use. This means that, if you want to, you can give Prolog queries like

X is +(3,2)

and Prolog will correctly reply

X = 5
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Actually, you can even given Prolog the query

?- is(X,+(3,2))

and Prolog will respond

X = 5

This is because, for Prolog, the expressionX is +(3,2) really is the
term is(X,+(3,2)). The expressionX is +(3,2) is just user-friendly
notation. Underneath, as always, Prolog is just working away with terms.

Summing up, arithmetic in Prolog is easy to use. Pretty much all
you have to remember is to useis to force evaluation, that stuff to be
evaluated must go to the right ofis, and to take care that any variables
are correctly instantiated. But there is a deeper point thatis worth
reflecting on: bolting on the extra capability to do arithmetic in this
way has further widened the gap between the procedural and declarative
meanings of Prolog programs.

3 Arithmetic and Lists
Probably the most important use of arithmetic in this book isto tell us
useful facts about data-structures, such as lists. For example, it can be
useful to know how long a list is. We’ll give some examples of using
lists together with arithmetic capabilities.

How long is a list? Here’s a recursive definition.

1. The empty list has length zero.

2. A non-empty list has length 1 +len(T), where len(T) is the length
of its tail.

This definition is practically a Prolog program already. Here’s the
code we need:

len([],0).

len([_|T],N) :- len(T,X), N is X+1.

This predicate works in the expected way. For example:

?- len([a,b,c,d,e,[a,b],g],X).

X = 7
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Now, this is quite a good program: it’s easy to understand and
efficient. But there is another method of finding the length ofa list.
We’ll now look at this alternative, because it introduces the idea of
accumulators. If you’re used to other programming languages, you’re
probably used to the idea of using variables to hold intermediate results.
An accumulator is the Prolog analog of this idea.

Here’s how to use an accumulator to calculate the length of a list. We
shall define a predicateaccLen/3 which takes the following arguments.

accLen(List,Acc,Length)

Here List is the list whose length we want to find, andLength is its
length (an integer). What aboutAcc? This is the accumulator we will
use to keep track of intermediate values for length (so it will also be
an integer). Here’s what we do. When we call this predicate, we are
going to give Acc an initial value of 0. We then recursively work our
way down the list, adding1 to Acc each time we find a head element,
until we reach the empty list. When we reach the empty list,Acc will
contain the length of the list. Here’s the code:

accLen([_|T],A,L) :- Anew is A+1, accLen(T,Anew,L).

accLen([],A,A).

The base case of the definition, unifies the second and third arguments.
Why? Because this trivial unification is a nice way of making sure that
the result, that is, the length of the list, is returned. Whenwe reach
the end of the list, the accumulator (the second variable) contains the
length of the list. So we give this value (via unification) to the length
variable (the third variable). Here’s an example trace. Youcan clearly
see how the length variable gets its value at the bottom of therecursion
and passes it upwards as Prolog is coming out of the recursion.

?- accLen([a,b,c],0,L).

Call: (6) accLen([a, b, c], 0, _G449) ?

Call: (7) _G518 is 0+1 ?

Exit: (7) 1 is 0+1 ?

Call: (7) accLen([b, c], 1, _G449) ?

Call: (8) _G521 is 1+1 ?

Exit: (8) 2 is 1+1 ?

Call: (8) accLen([c], 2, _G449) ?

Call: (9) _G524 is 2+1 ?

Exit: (9) 3 is 2+1 ?

Call: (9) accLen([], 3, _G449) ?
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Exit: (9) accLen([], 3, 3) ?

Exit: (8) accLen([c], 2, 3) ?

Exit: (7) accLen([b, c], 1, 3) ?

Exit: (6) accLen([a, b, c], 0, 3) ?

As a final step, we’ll define a predicate which callsaccLen for us,
and gives it the initial value of 0:

leng(List,Length) :- accLen(List,0,Length).

So now we can pose queries like this:

?- leng([a,b,c,d,e,[a,b],g],X).

Accumulators are extremely common in Prolog programs. (We’ll see
another accumulator based program in this chapter, and somemore in
later chapters.) But why is this? In what way isaccLen better than
len? After all, it looks more difficult. The answer is thataccLen is tail
recursive whilelen is not. In tail recursive programs, the result is fully
calculated once we reached the bottom of the recursion and just has to be
passed up. In recursive programs which are not tail recursive, there are
goals at other levels of recursion which have to wait for the answer from
a lower level of recursion before they can be evaluated. To understand
this, compare the traces for the queriesaccLen([a,b,c],0,L) (see
above) andlen([a,b,c],0,L) (given below). In the first case the
result is built while going into the recursion — once the bottom is
reached ataccLen([],3,_G449), the result is there and only has to be
passed up. In the second case the result is built while comingout of
the recursion; the result oflen([b,c], _G481), for instance, is only
computed after the recursive call oflen has been completed and the
result of len([c],_G489) is known. In short, tail recursive programs
have less bookkeeping overhead, and this makes them more efficient.

?- len([a,b,c],L).

Call: (6) len([a, b, c], _G418) ?

Call: (7) len([b, c], _G481) ?

Call: (8) len([c], _G486) ?

Call: (9) len([], _G489) ?

Exit: (9) len([], 0) ?

Call: (9) _G486 is 0+1 ?

Exit: (9) 1 is 0+1 ?

Exit: (8) len([c], 1) ?

Call: (8) _G481 is 1+1 ?

Exit: (8) 2 is 1+1 ?
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Exit: (7) len([b, c], 2) ?

Call: (7) _G418 is 2+1 ?

Exit: (7) 3 is 2+1 ?

Exit: (6) len([a, b, c], 3) ?

4 Comparing Integers
Some Prolog arithmetic predicates actually do carry out arithmetic all
by themselves (that is, without the assistance ofis). These are the
operators that compare integers.

Arithmetic examples Prolog Notation
x < y X < Y.

x ≤ y X =< Y.

x = y X =:= Y.

x 6= y X =\= Y.

x ≥ y X >= Y

x > y X > Y

These operators have the obvious meaning:

?- 2 < 4.

yes

?- 2 =< 4.

yes

?- 4 =< 4.

yes

?- 4=:=4.

yes

?- 4=\=5.

yes

?- 4=\=4.

no

?- 4 >= 4.

yes

?- 4 > 2.

yes
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Moreover, they force both their right hand and left hand arguments to
be evaluated:

?- 2 < 4+1.

yes

?- 2+1 < 4.

yes

?- 2+1 < 3+2.

yes

Note that=:= is different from =, as the following examples show:

?- 4=4.

yes

?- 2+2 =4.

no

?- 2+2 =:= 4.

yes

That is, = tries to unify its arguments; it doesnot force arithmetic
evaluation. That’s=:=’s job.

Whenever we use these operators, we have to take care that any
variables are instantiated. For example, all the followingqueries lead to
instantiation errors.

?- X < 3.

?- 3 < Y.

?- X =:= X.

Moreover, variables have to be instantiated tointegers. The query

?- X = 3, X < 4.

succeeds. But the query

?- X = b, X < 4.

fails.
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Ok, let’s now look at an example which puts Prolog’s abilities to
compare numbers to work. We’re going to define a predicate which
takes a non-empty list of non-negative integers as its first argument, and
returns the maximum integer in the list as its last argument.Again, we’ll
use an accumulator. As we work our way down the list, the accumulator
will keep track of the highest integer found so far. If we find ahigher
value, the accumulator will be updated to this new value. When we call
the program, we set the accumulator to an initial value of 0.

Here’s the code. Note that there aretwo recursive clauses:

accMax([H|T],A,Max) :-

H > A,

accMax(T,H,Max).

accMax([H|T],A,Max) :-

H =< A,

accMax(T,A,Max).

accMax([],A,A).

The first clause tests if the head of the list is larger than thelargest
value found so far. If it is, we set the accumulator to this newvalue,
and then recursively work through the tail of the list. The second clause
applies when the head is less than or equal to the accumulator; in
this case we recursively work through the tail of the list using the old
accumulator value. Finally, the base clause unifies the second and third
arguments; it gives the highest value we found while going through the
list to the last argument.

Here’s an example query:

?- accMax([1,0,5,4],0,Max).

Here the first clause ofaccMax applies, resulting in the following goal:

?- accMax([0,5,4],1,Max).

Note the value of the accumulator has changed to 1. Now the second
clause ofaccMax applies, as 0 (the next element of the list) is smaller
than 1, the value of the accumulator. This process is repeated until we
reach the empty list:

?- accMax([5,4],1,Max).

?- accMax([4],5,Max).

?- accMax([],5,Max).
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Now the third clause applies, unifying the variableMax with the value
of the accumulator:

Max = 5.

yes

Again, it’s nice to define a predicate which calls this, and initialises
the accumulator. But wait: what should we initialise the accumulator to?
If you say 0, this means you are assuming that all the numbers in the
list are positive. But suppose we give a list of negative integers as
input. Then we would have

?- accMax([-11,-2,-7,-4,-12],0,Max).

Max = 0

yes

This is not what we want: the biggest number on the list is -2. Our
use of 0 as the initial value of the accumulator has ruined everything,
because it’s bigger than any number on the list.

There’s an easy way around this: since our input list will always be a
non-empty list of integers, simply initialise the accumulator to the head
of the list. That way we guarantee that the accumulator is initialised to
a number on the list. The following predicate does this for us:

max(List,Max) :-

List = [H|_],

accMax(List,H,Max).

So we can simply say:

max([1,2,46,53,0],X).

X = 53

yes

And furthermore we have:

max([-11,-2,-7,-4,-12],X).

X = -2

yes
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5 Exercises

Exercise 5.1. How does Prolog respond to the following queries? E

1. X = 3*4.

2. X is 3*4.

3. 4 is X.

4. X = Y.

5. 3 is 1+2.

6. 3 is +(1,2).

7. 3 is X+2.

8. X is 1+2.

9. 1+2 is 1+2.

10. is(X,+(1,2)).

11. 3+2 = +(3,2).

12. *(7,5) = 7*5.

13. *(7,+(3,2)) = 7*(3+2).

14. *(7,(3+2)) = 7*(3+2).

15. 7*3+2 = *(7,+(3,2)).

16. *(7,(3+2)) = 7*(+(3,2)).

Exercise 5.2. E

1. Define a 2-place predicateincrement that holds only when its
second argument is an integer one larger than its first argument.
For example,increment(4,5) should hold, butincrement(4,6)
should not.

2. Define a 3-place predicatesum that holds only when its third
argument is the sum of the first two arguments. For example,
sum(4,5,9) should hold, butsum(4,6,12) should not.
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Exercise 5.3. Write a predicateaddone/2 whose first argument is a listE
of integers, and whose second argument is the list of integers obtained
by adding 1 to each integer in the first list. For example, the query

?- addone([1,2,7,2],X).

should give

X = [2,3,8,3].

6 Practical Session
The purpose of Practical Session 5 is to help you get familiarwith
Prolog’s arithmetic capabilities, and to give you some further practice in
list manipulation. To this end, we suggest the following programming
exercises:

1. In the text we discussed the 3-place predicateaccMax which
returned the maximum of a list of integers. By changing the code
slightly, turn this into a 3-place predicateaccMin which returns
the minimum of a list of integers.

2. In mathematics, an n-dimensional vector is a list of numbers of
length n. For example,[2,5,12] is a 3-dimensional vector, and
[45,27,3,-4,6] is a 5-dimensional vector. One of the basic
operations on vectors isscalar multiplication. In this operation,
every element of a vector is multiplied by some number. For
example, if we scalar multiply the 3-dimensional vector[2,7,4]

by 3 the result is the 3-dimensional vector[6,21,12].

Write a 3-place predicatescalarMult whose first argument is
an integer, whose second argument is a list of integers, and
whose third argument is the result of scalar multiplying thesecond
argument by the first. For example, the query

?- scalarMult(3,[2,7,4],Result).

should yield

Result = [6,21,12]

3. Another fundamental operation on vectors is thedot product. This
operation combines two vectors of the same dimension and yields
a number as a result. The operation is carried out as follows:
the corresponding elements of the two vectors are multiplied, and
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the results added. For example, the dot product of[2,5,6] and
[3,4,1] is 6+20+6, that is, 32. Write a 3-place predicatedot
whose first argument is a list of integers, whose second argument
is a list of integers of the same length as the first, and whose
third argument is the dot product of the first argument with the
second. For example, the query

?- dot([2,5,6],[3,4,1],Result).

should yield

Result = 32





Chapter 6

More Lists

This chapter has two main goals:

1. To define append/3, a predicate for concate-
nating two lists, and illustrate what can be
done with it.

2. To discuss two ways of reversing a list: a
naive method using append/3, and a more
efficient method using accumulators.
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1 Append
We shall define an important predicateappend/3 whose arguments are
all lists. Viewed declaratively,append(L1,L2,L3) will hold when the
list L3 is the result of concatenating the listsL1 and L2 together
(concatenating means joining the lists together, end to end). For example,
if we pose the query

?- append([a,b,c],[1,2,3],[a,b,c,1,2,3]).

or the query

?- append([a,[foo,gibble],c],[1,2,[[],b]],

[a,[foo,gibble],c,1,2,[[],b]).

we will get the response yes. On the other hand, if we pose the query

?- append([a,b,c],[1,2,3],[a,b,c,1,2]).

or the query

?- append([a,b,c],[1,2,3],[1,2,3,a,b,c]).

we will get the answer no.
From a procedural perspective, the most obvious use ofappend/3 is

to concatenate two lists together. We can do this simply by using a
variable as the third argument: the query

?- append([a,b,c],[1,2,3],L3).

yields the response

L3 = [a,b,c,1,2,3]

yes

But (as we shall soon see) we can also useappend/3 to split up
a list. In fact, append/3 is a real workhorse. There’s lots we can do
with it, and studying it is a good way to gain a better understanding of
list processing in Prolog.

Defining append

Here’s howappend/3 is defined:

append([],L,L).

append([H|T],L2,[H|L3]) :- append(T,L2,L3).
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This is a recursive definition. The base case simply says that
appending the empty list to any list whatsoever yields that same list,
which is obviously true.

But what about the recursive step? This says that when we concatenate
a non-empty list[H|T] with a list L2, we end up with the list whose
head is H and whose tail is the result of concatenatingT with L2. It
may be useful to think about this definition pictorially:

Input: [ H | T ] + L2

Result: [ H | L3
︸ ︷︷ ︸

T + L2

]

But what is the procedural meaning of this definition? What
actually goes on when we useappend/3 to glue two lists together?
Let’s take a detailed look at what happens when we pose the query
?- append([a,b,c],[1,2,3],X).

When we pose this query, Prolog will match it to the head of the
recursive rule, generating a new internal variable (say_G518) in the
process. If we carried out a trace of what happens next, we would get
something like the following:

append([a, b, c], [1, 2, 3], _G518)

append([b, c], [1, 2, 3], _G587)

append([c], [1, 2, 3], _G590)

append([], [1, 2, 3], _G593)

append([], [1, 2, 3], [1, 2, 3])

append([c], [1, 2, 3], [c, 1, 2, 3])

append([b, c], [1, 2, 3], [b, c, 1, 2, 3])

append([a, b, c], [1, 2, 3], [a, b, c, 1, 2, 3])

X = [a, b, c, 1, 2, 3]

yes

The basic pattern should be clear: in the first four lines we see that
Prolog recurses its way down the list in its first argument until it can
apply the base case of the recursive definition. Then, as the next four
lines show, it then stepwise ‘fills in’ the result. How is this‘filling in’
process carried out? By successively instantiating the variables _G593,
_G590, _G587, and _G518. But while it’s important to grasp this
basic pattern, it doesn’t tell us all we need to know about theway
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append/3 works, so let’s dig deeper. Here is the search tree for the
query append([a,b,c],[1,2,3],X). We’ll work carefully through all
the steps, making a careful note of what our goals are, and what the
variables are instantiated to.

?- append([a,b,c],[1,2,3], G518)

?- append([b,c],[1,2,3], G587)

G518 = [a| G587]

?- append([c],[1,2,3], G590)

G587 = [b| G590]

G518 = [a,b| G590]

?- append([],[1,2,3], G593)

G590 = [c| G593]

G587 = [b,c| G593]

G518 = [a,b,c| G593]

G593 = [1,2,3]

G590 = [c,1,2,3]

G587 = [b,c,1,2,3]

G518 = [a,b,c,1,2,3]

1. Goal 1: append([a,b,c],[1,2,3],_G518). Prolog matches this to
the head of the recursive rule (that is,append([H|T],L2,[H|L3])).
Thus _G518 is unified to [a|L3], and Prolog has the new goal
append([b,c],[1,2,3],L3). It generates a new variable_G587
for L3, thus we have that_G518 = [a|_G587].

2. Goal 2: append([b,c],[1,2,3],_G587). Prolog matches this to
the head of the recursive rule, thus_G587 is unified to [b|L3],
and Prolog has the new goalappend([c],[1,2,3],L3). It
generates the internal variable_G590 for L3, thus we have that
_G587 = [b|_G590].
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3. Goal 3: append([c],[1,2,3],_G590). Prolog matches this to
the head of the recursive rule, thus_G590 is unified to [c|L3],
and Prolog has the new goalappend([],[1,2,3],L3). It
generates the internal variable_G593 for L3, thus we have that
_G590 = [c|_G593].

4. Goal 4: append([],[1,2,3],_G593). At last: Prolog can use the
base clause (that is,append([],L,L)). And in the four successive
matching steps, Prolog will obtain answers to Goal 4, Goal 3,
Goal 2, and Goal 1. Here’s how.

5. Answer to Goal 4:append([],[1,2,3],[1,2,3]). This is because
when we match Goal 4 (that is,append([],[1,2,3],_G593) to
the base clause,_G593 is unified to [1,2,3].

6. Answer to Goal 3: append([c],[1,2,3],[c,1,2,3]). Why?
Because Goal 3 isappend([c],[1,2,3],_G590]), and _G590 is
the list [c|_G593], and we have just unified_G593 to [1,2,3].
So _G590 is unified to [c,1,2,3].

7. Answer to Goal 2:append([b,c],[1,2,3],[b,c,1,2,3]). Why?
Because Goal 2 isappend([b,c],[1,2,3],_G587]), and _G587

is the list [b|_G590], and we have just unified_G590 to
[c,1,2,3]. So _G587 is unified to [b,c,1,2,3].

8. Answer to Goal 1: append([a,b,c],[1,2,3],[b,c,1,2,3]).
Why? Because Goal 2 isappend([a,b,c],[1,2,3],_G518]),
and _G518 is the list [a|_G587], and we have just unified_G587
to [b,c,1,2,3]. So _G518 is unified to [a,b,c,1,2,3].

9. Thus Prolog now knows how to instantiateX, the original query
variable. It tells us thatX = [a,b,c,1,2,3], which is what we
want.

Work through this example carefully, and make sure you fully
understand the pattern of variable instantiations, namely:

_G518 = [a|_G587]

= [a|[b|_G590]]

= [a|[b|[c|_G593]]]

This type of pattern lies at the heart of the wayappend/3 works.
Moreover, it illustrates a more general theme: the use of unification to
build structure. In a nutshell, the recursive calls toappend/3 build up
this nested pattern of variables which code up the required answer. When
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Prolog finally instantiates the innermost variable_G593 to [1, 2, 3],
the answer crystallises out, like a snowflake forming arounda grain of
dust. But it is unification, not magic, that produces the result.

Using append

Now that we understand howappend/3 works, let’s see how we can
put it to work.

One important use ofappend/3 is to split up a list into two
consecutive lists. For example:

?- append(X,Y,[a,b,c,d]).

X = []

Y = [a,b,c,d] ;

X = [a]

Y = [b,c,d] ;

X = [a,b]

Y = [c,d] ;

X = [a,b,c]

Y = [d] ;

X = [a,b,c,d]

Y = [] ;

no

That is, we give the list we want to split up (here[a,b,c,d]) to
append/3 as the third argument, and we use variables for the first two
arguments. Prolog then searches for ways of instantiating the variables to
two lists that concatenate to give the third argument, thus splitting up the
list in two. Moreover, as this example shows, by backtracking, Prolog
can find all possible ways of splitting up a list into two consecutive lists.

This ability means it is easy to define some useful predicateswith
append/3. Let’s consider some examples. First, we can define a
program which finds prefixes of lists. For example, the prefixes of
[a,b,c,d] are [], [a], [a,b], [a,b,c], and [a,b,c,d]. With the
help of append/3 it is straightforward to define a programprefix/2,
whose arguments are both lists, such thatprefix(P,L) will hold when
P is a prefix of L. Here’s how:
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prefix(P,L):- append(P,_,L).

This says that listP is a prefix of list L when there is some list
such thatL is the result of concatenatingP with that list. (We use the
anonymous variable since we don’t care what that other list is: we only
care that there is some such list or other.) This predicate successfully
finds prefixes of lists, and moreover, via backtracking, findsthem all:

?- prefix(X,[a,b,c,d]).

X = [] ;

X = [a] ;

X = [a,b] ;

X = [a,b,c] ;

X = [a,b,c,d] ;

no

In a similar fashion, we can define a program which finds suffixes
of lists. For example, the suffixes of[a,b,c,d] are [], [d], [c,d],
[b,c,d], and [a,b,c,d]. Again, using append/3 it is easy to
define suffix/2, a predicate whose arguments are both lists, such that
suffix(S,L) will hold when S is a suffix of L:

suffix(S,L):- append(_,S,L).

That is, list S is a suffix of list L if there is some list such thatL is
the result of concatenating that list withS. This predicate successfully
finds suffixes of lists, and moreover, via backtracking, findsthem all:

?- suffix(X,[a,b,c,d]).

X = [a,b,c,d] ;

X = [b,c,d] ;

X = [c,d] ;

X = [d] ;
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X = [] ;

no

Make sure you understand why the results come out in this order.

And now it’s very easy to define a program that finds sublists of
lists. The sublists of[a,b,c,d] are [], [a], [b], [c], [d], [a,b],
[b,c], [c,d], [a,b,c], [b,c,d], and [a,b,c,d]. A little thought
reveals that the sublists of a list L are simply theprefixes of suffixes of
L. Think about it pictorially:

Take suffix: a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p
︸ ︷︷ ︸

Take prefix: h, i, j, k, l
︸ ︷︷ ︸

, m, n, o, p

Result: h, i, j, k, l

As we already have defined the predicates for producing suffixes and
prefixes of lists, we simply define a sublist as:

sublist(SubL,L):- suffix(S,L), prefix(SubL,S).

That is, SubL is a sublist ofL if there is some suffixS of L of which
SubL is a prefix. This program doesn’texplicitly use append/3, but of
course, under the surface, that’s what’s doing the work for us, as both
prefix/2 and suffix/2 are defined usingappend/3.

2 Reversing a List
The append/3 predicate is useful, and it is important to know how to
put it to work. But it is just as important to know that it can bea
source of inefficiency, and that you probably don’t want to use it all the
time.

Why is append/3 a source of inefficiency? If you think about the
way it works, you’ll notice a weakness:append/3 doesn’t join two lists
in one simple action. Rather, it needs to work its way down itsfirst
argument until it finds the end of the list, and only then can itcarry
out the concatenation.

Now, often this causes no problems. For example, if we have two
lists and we just want to concatenate them, it’s probably nottoo bad.
Sure, Prolog will need to work down the length of the first list, but if
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the list is not too long, that’s probably not too high a price to pay for
the ease of working withappend/3.

But matters may be very different if the first two arguments are given
as variables. As we’ve just seen, it can be very useful to giveappend/3

variables in its first two arguments, for this lets Prolog search for ways
of splitting up the lists. But there is a price to pay: a lot of searching
is going on, and this can lead to very inefficient programs.

To illustrate this, we shall examine the problem of reversing a list.
That is, we will examine the problem of defining a predicate which
takes a list (say[a,b,c,d]) as input and returns a list containing the
same elements in the reverse order (here[d,c,b,a]).

Now, a reverse predicate is a useful predicate to have around. As
you will have realised by now, lists in Prolog are far easier to access
from the front than from the back. For example, to pull out thehead of
a list L, all we have to do is perform the unification[H|_] = L; this
results in H being instantiated to the head ofL. But pulling out the
last element of an arbitrary list is harder: we can’t do it simply using
unification. On the other hand, if we had a predicate which reversed
lists, we could first reverse the input list, and then pull outthe head of
the reversed list, as this would give us the last element of the original
list. So a reverse predicate could be a useful tool. However,as we may
have to reverse large lists, we would like this tool to be efficient. So
we need to think about the problem carefully.

And that’s what we’re going to do now. We will define two reverse
predicates: a naive one, defined with the help ofappend/3, and a more
efficient (and indeed, more natural) one defined using accumulators.

Naive reverse using append

Here’s a recursive definition of what is involved in reversing a list:

1. If we reverse the empty list, we obtain the empty list.

2. If we reverse the list[H|T], we end up with the list obtained by
reversingT and concatenating with[H].

To see that the recursive clause is correct, consider the list [a,b,c,d].
If we reverse the tail of this list we obtain[d,c,b]. Concatenating this
with [a] yields [d,c,b,a], which is the reverse of[a,b,c,d].

With the help of append/3 it is easy to turn this recursive definition
into Prolog:

naiverev([],[]).

naiverev([H|T],R):- naiverev(T,RevT), append(RevT,[H],R).
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Now, this definition is correct, but it does an awful lot of work. It is
very instructive to look at a trace of this program. This shows that the
program is spending a lot of time carrying out appends. This shouldn’t
be too surprising: after, all, we are callingappend/3 recursively. The
result is very inefficient (if you run a trace, you will find that it takes
about 90 steps to reverse an eight element list) and hard to understand
(the predicate spends most of its time in the recursive callsto append/3,
making it very hard to see what is going on).

Not nice. But as we shall now see, thereis a better way.

Reverse using an accumulator

The better way is to use an accumulator. The underlying idea is simple
and natural. Our accumulator will be a list, and when we startit will
be empty. Suppose we want to reverse[a,b,c,d]. At the start, our
accumulator will be[]. So we simply take the head of the list we are
trying to reverse and add it as the head of the accumulator. Wethen
carry on processing the tail, thus we are faced with the task of reversing
[b,c,d], and our accumulator is[a]. Again we take the head of the
list we are trying to reverse and add it as the head of the accumulator
(thus our new accumulator is[b,a]) and carry on trying to reverse
[c,d]. Again we use the same idea, so we get a new accumulator
[c,b,a], and try to reverse[d]. Needless to say, the next step yields
an accumulator[d,c,b,a] and the new goal of trying to reverse[].
This is where the process stops:and our accumulator contains the
reversed list we want. To summarise: the idea is simply to work our
way through the list we want to reverse, and push each elementin turn
onto the head of the accumulator, like this:

List: [a,b,c,d] Accumulator: []

List: [b,c,d] Accumulator: [a]

List: [c,d] Accumulator: [b,a]

List: [d] Accumulator: [c,b,a]

List: [] Accumulator: [d,c,b,a]

This will be efficient because we simply blast our way throughthe list
once: we don’t have to waste time carrying out concatenationor other
irrelevant work.

It’s also easy to put this idea in Prolog. Here’s the accumulator code:

accRev([H|T],A,R):- accRev(T,[H|A],R).

accRev([],A,A).

This is classic accumulator code: it follows the same pattern as the
arithmetic examples we examined in the previous chapter. The recursive
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clause is responsible for chopping off the head of the input list, and
pushing it onto the accumulator. The base case halts the program, and
copies the accumulator to the final argument.

As is usual with accumulator code, it’s a good idea to write a
predicate which carries out the required initialisation ofthe accumulator
for us:

rev(L,R):- accRev(L,[],R).

Again, it is instructive to run some traces on this program and
compare it withnaiverev/2. The accumulator based version isclearly
better. For example, it takes about 20 steps to reverse an eight element
list, as opposed to 90 for the naive version. Moreover, the trace is far
easier to follow. The idea underlying the accumulator basedversion is
simpler and more natural than the recursive calls toappend/3.

Summing up,append/3 is a useful program, and you certainly should
not be scared of using it. However, you also need to be aware that it is
a source of inefficiency, so when you use it, ask yourself whether there
is a better way. And often there is. The use of accumulators isoften
better, and (as therev/2 example show) accumulators can be a natural
way of handling list processing tasks.

3 Exercises

Exercise 6.1. Let’s call a list doubled if it is made of two E
consecutive blocks of elements that are exactly the same. For example,
[a,b,c,a,b,c] is doubled (it’s made up of[a,b,c] followed by
[a,b,c]) and so is [foo,gubble,foo,gubble]. On the other hand,
[foo,gubble,foo] is not doubled. Write a predicatedoubled(List)
which succeeds whenList is a doubled list.

Exercise 6.2. A palindrome is a word or phrase that spells the same E
forwards and backwards. For example, ‘rotator’, ‘eve’, and‘nurses run’
are all palindromes. Write a predicatepalindrome(List), which checks
whetherList is a palindrome. For example, to the queries

?- palindrome([r,o,t,a,t,o,r]).

and

?- palindrome([n,u,r,s,e,s,r,u,n]).

Prolog should respond yes, but to the query

?- palindrome([n,o,t,h,i,s]).
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it should respond no.

Exercise 6.3. Write a predicatetoptail(InList,OutList) whichE
says no ifInList is a list containing fewer than 2 elements, and which
deletes the first and the last elements ofInList and returns the result
as OutList, when InList is a list containing at least 2 elements. For
example:

toptail([a],T).

no

toptail([a,b],T).

T=[]

toptail([a,b,c],T).

T=[b]

(Hint: here’s whereappend/3 comes in useful.)

Exercise 6.4. Write a predicatelast(List,X) which is true onlyE
when List is a list that contains at least one element andX is the last
element of that list. Do this in two different ways:

1. Define last/2 using the predicaterev/2 discussed in the text.

2. Define last/2 using recursion.

Exercise 6.5. Write a predicateswapfl(List1,List2) which checksE
whether List1 is identical to List2, except that the first and last
elements are exchanged. Here’s whereappend/3 could come in useful
again, but it is also possible to write a recursive definitionwithout
appealing toappend/3 (or any other) predicates.

Exercise 6.6. Here is an exercise for those of you who like logicE
puzzles.

There is a street with three neighbouring houses that all have a
different colour, namely red, blue, and green. People of different
nationalities live in the different houses and they all havea different pet.
Here are some more facts about them:

• The Englishman lives in the red house.

• The jaguar is the pet of the Spanish family.

• The Japanese lives to the right of the snail keeper.

• The snail keeper lives to the left of the blue house.
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Who keeps the zebra? Don’t work it out for yourself: define a predicate
zebra/1 that tells you the nationality of the owner of the zebra!

(Hint: Think of a representation for the houses and the street. Code
the four constraints in Prolog. You may findmember/2 and sublist/2

useful.)

4 Practical Session
The purpose of Practical Session 6 is to help you get more experience
with list manipulation. We first suggest some traces for you to carry
out, and then some programming exercises.

The following traces will help you get to grips with the predicates
discussed in the text:

1. Carry out traces ofappend/3 with the first two arguments
instantiated, and the third argument uninstantiated. For example,
append([a,b,c],[[],[2,3],b],X) Make sure the basic pattern
is clear.

2. Next, carry out traces onappend/3 as used to split up a list, that is,
with the first two arguments given as variables, and the last argument
instantiated. For example,append(L,R,[foo,wee,blup]).

3. Carry out some traces onprefix/2 and suffix/2. Why does
prefix/2 find shorter lists first, andsuffix/2 longer lists first?

4. Carry out some traces onsublist/2. As we said in the text, via
backtracking this predicate generates all possible sublists, but as
you’ll see, it generates several sublists more than once. Doyou
understand why?

5. Carry out traces on bothnaiverev/2 and rev/2, and compare
their behaviour.

Now for some programming work:

1. It is possible to write a one line definition of themember predicate
by making use ofappend/3. Do so. How does this new version
of member compare in efficiency with the standard one?

2. Write a predicateset(InList,OutList) which takes as input an
arbitrary list, and returns a list in which each element of the input
list appears only once. For example, the query

set([2,2,foo,1,foo, [],[]],X).
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should yield the result

X = [2,foo,1,[]].

(Hint: use the member predicate to test for repetitions of items
you have already found.)

3. We ‘flatten’ a list by removing all the square brackets around any
lists it contains as elements, and around any lists that its elements
contain as elements, and so on, for all nested lists. For example,
when we flatten the list

[a,b,[c,d],[[1,2]],foo]

we get the list

[a,b,c,d,1,2,foo]

and when we flatten the list

[a,b,[[[[[[[c,d]]]]]]],[[1,2]],foo,[]]

we also get

[a,b,c,d,1,2,foo].

Write a predicateflatten(List,Flat) that holds when the first
argumentList flattens to the second argumentFlat. This should
be done without making use ofappend/3.

Ok, we’re now halfway through the book. And flattening a list is the
Pons Asinorum of Prolog programming. Did you cross it ok? If so,
great. Time to move on.



Chapter 7

Definite Clause Grammars

This chapter has two main goals:

1. To introduce context free grammars (CFGs)
and some related concepts.

2. To introduce definite clause grammars
(DCGs), a built-in Prolog mechanism for
working with context free grammars (and
other kinds of grammar too).
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1 Context Free Grammars
Prolog has been used for many purposes, but its inventor, Alain
Colmerauer, was interested in computational linguistics,and this remains
a classic application for the language. Moreover, Prolog offers a number
of tools which make life easier for computational linguists, and we are
now going to start learning about one of the most useful of these:
definite clause grammars, or DCGs as they are usually called.

DCGs are a special notation for defining grammars. So, beforewe go
any further, we’d better learn what a grammar is. We shall do so by
discussing context free grammars (or CFGs). The basic idea of context
free grammars is simple to understand, but don’t be fooled into thinking
that CFGs are toys. They’re not. While CFGs aren’t powerful enough
to cope with the syntactic structure of all natural languages (that is, the
kind of languages that human beings use), they can certainlyhandle most
aspects of the syntax of many natural languages (for example, English
and French) in a reasonably natural way.

So what is a context free grammar? In essence, a finite collection
of rules which tell us that certain sentences are grammatical (that is,
syntactically correct) and what their grammatical structure actually is.
Here’s a simple context free grammar for a small fragment of English:

s -> np vp

np -> det n

vp -> v np

vp -> v

det -> a
det -> the
n -> woman
n -> man
v -> shoots

What are the ingredients of this little grammar? Well, first note that
it contains three types of symbol. There’s->, which is used to define
the rules. Then there are the symbols written like this:s, np, vp, det,
n, v. These symbols are called non-terminal symbols; we’ll soonlearn
why. Each of these symbols has a traditional meaning in linguistics: s

is short for sentence,np is short for noun phrase,vp is short for verb
phrase, anddet is short for determiner. That is, each of these symbols
is shorthand for a grammatical category. Finally there are the symbols
in italics: a, the, woman, man, and shoots. These are terminal symbols,
though a computer scientist might call them the alphabet, and linguists
might call them lexical items. We’ll usually just call them words.
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This grammar contains nine context free rules. A context free rule
consists of a single non-terminal symbol, followed by->, followed by a
finite sequence made up of terminal and/or non-terminal symbols. All
nine items listed above have this form, so they are all legitimate context
free rules. What do these rules mean? They tell us how different
grammatical categories can be built up. Read-> as can consist of, or
can be built out of. For example, the first rule tells us that a sentence
can consist of a noun phrase followed by a verb phrase. The third rule
tells us that a verb phrase can consist of a verb followed by a noun
phrase, while the fourth rule tells us that there is another way to build
a verb phrase: simply use a verb. The last five rules tell us that a and
the are determiners, thatman and woman are nouns, and thatshoots is
a verb.

Now consider the string of wordsa woman shoots a man. Is this
grammatical according to our little grammar? And if it is, what structure
does it have? The following tree answers both questions:

s

np

det

a

n

woman

vp

v

shoots

np

det

a

n

man

Right at the top we have a node markeds. This node has two
daughters, one markednp, and one markedvp. Note that this part of
the diagram agrees with the first rule of the grammar, which says that
an s can be built out of annp and a vp. (A linguist would say that
this part of the tree is licensed by the first rule.) In fact, asyou can
see,every part of the tree is licensed by one of our rules. For example,
the two nodes markednp are licensed by the rule that says that an
np can consist of adet followed by an n. And, right at the bottom
of the diagram, all the words ina woman shoots a manare licensed
by a rule. Incidentally, note that the terminal symbols onlydecorate
the nodes right at the bottom of the tree (the terminal nodes)while
non-terminal symbols only decorate nodes that are higher upin the tree
(the non-terminal nodes).
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Such a tree is called a parse tree. Parse trees are important because
they give us two kinds of information. Firstly, they give us information
about strings. Secondly, they give us information about structure. This is
an important distinction to grasp, so let’s have a closer look, and learn
some important terminology while we are doing so.

First, if we are given a string of words, and a grammar, and it turns
out that we can build a parse tree like the one above (that is, a tree
that hass at the top node, and every node in the tree is licensed by
the grammar, and the string of words we were given is listed inthe
correct order along the terminal nodes) then we say that the string is
grammatical (according to the given grammar). For example,the string
a woman shoots a manis grammatical according to our little grammar
(and indeed, any reasonable grammar of English would classify it as
grammatical). On the other hand, if there isn’t any such tree, the string
is ungrammatical (according to the given grammar). For example, the
string woman a woman man a shootsis ungrammatical according to our
little grammar (and any reasonable grammar of English wouldclassify
it as ungrammatical). The language generated by a grammar consists of
all the strings that the grammar classifies as grammatical. For example,
a woman shoots a manalso belongs to the language generated by our
little grammar, and so doesa man shoots the woman. A context free
recogniser is a program which correctly tells us whether or not a string
belongs to the language generated by a context free grammar.To put it
another way, a recogniser is a program that correctly classifies strings as
grammatical or ungrammatical (relative to some grammar).

But often, in both linguistics and computer science, we are not
merely interested in whether a string is grammatical or not,we also
want to know why it is grammatical. More precisely, we often want
to know what its structure is, and this is exactly the information a
parse tree gives us. For example, the above parse tree shows us how
the words in a woman shoots a manfit together, piece by piece, to
form the sentence. This kind of information would be important if we
were using this sentence in some application and needed to say what it
actually meant (that is, if we wanted to do semantics). A context free
parser is a program which correctly decides whether a stringbelongs
to the language generated by a context free grammarand also tells us
what its structure is. That is, whereas a recogniser merely says “Yes,
grammatical” or “No, ungrammatical” to each string, a parser actually
builds the associated parse tree and gives it to us.
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It remains to explain one final concept, namely what a contextfree
language is. (Don’t get confused: we’ve told you what a context free
grammar is, but not what a context freelanguage is.) Quite simply, a
context free language is a language that can be generated by acontext
free grammar. Some languages are context free, and some are not. For
example, it seems plausible that English is a context free language. That
is, it is probably possible to write a context free grammar that generates
all (and only) the sentences that native speakers find acceptable. On
the other hand, some dialects of Swiss-German arenot context free. It
can be proved mathematically that no context free grammar can generate
all (and only) the sentences that native speakers of Swiss-German find
acceptable.1 So if you wanted to write a grammar for such dialects, you
would have to employ additional grammatical mechanisms, not merely
context free rules.

CFG recognition using append

That’s the theory, but how do we work with context free grammars in
Prolog? To make things concrete: suppose we are given a context free
grammar. How can we write a recogniser for it? And how can we write
a parser for it? In this chapter we’ll look at the first question in detail.
We’ll first show how (rather naive) recognisers can be written in Prolog,
and then show how more sophisticated recognisers can be written with
the help of difference lists. This discussion will lead us todefinite clause
grammars, Prolog’s built-in grammar tool. In the followingchapter we’ll
look at definite clause grammars in more detail, and learn (among other
things) how to use them to define parsers.

So: given a context free grammar, how do we define a recogniserin
Prolog? In fact, Prolog offers a very direct answer to this question: we
can simply write down Prolog clauses that correspond, in an obvious
way, to the grammar rules. That is, we can simply turn the grammar
into Prolog.

Here’s a simple (though as we shall learn, inefficient) way ofdoing
this. We shall use lists to represent strings. For example, we shall
use the list[a,woman,shoots,a,man] to represent the stringa woman
shoots a man. Now, we have already said that the-> symbol used
in context free grammars meanscan consist of, or can be built out
of, and this idea is easily modelled using lists. For example, the rule
s -> np vp can be thought of as saying: a list of words is ans list if
it is the result of concatenating annp list with a vp list. As we know

1“Evidence against the context-freeness of natural language”, Stuart M. Shieber,
Linguistics and Philosophy, 8:333–343, 1985.
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how to concatenate lists in Prolog (we can useappend/3), it should be
easy to turn these kinds of rules into Prolog. And what about the rules
that tell us about individual words? Even easier: we can simply view
n -> woman as saying that the list[woman] is an n list.

If we turn these ideas into Prolog, this is what we get:

s(Z):- np(X), vp(Y), append(X,Y,Z).

np(Z):- det(X), n(Y), append(X,Y,Z).

vp(Z):- v(X), np(Y), append(X,Y,Z).

vp(Z):- v(Z).

det([the]).

det([a]).

n([woman]).

n([man]).

v([shoots]).

The correspondence between the CFG rules and the Prolog code
should be clear. And to use this program as a recogniser, we simply
pose the obvious queries. For example:

?- s([a,woman,shoots,a,man]).

yes

In fact, because this is a simple declarative Prolog program, we can
do more than this: we can also generate all the sentences thisgrammar
produces. Our little grammar generates 20 sentences. Here are the first
five:

?- s(X).

X = [the,woman,shoots,the,woman] ;

X = [the,woman,shoots,the,man] ;

X = [the,woman,shoots,a,woman] ;

X = [the,woman,shoots,a,man] ;
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X = [the,woman,shoots]

Moreover, we’re not restricted to posing questions about sentences: we
can ask about other grammatical categories. For example:

?- np([a,woman]).

yes

And we can generate noun phrases with the following query.

?- np(X).

Now this is rather nice. We have a simple, easy to understand
program which corresponds with our CFG in an obvious way. Moreover,
if we added more rules to our CFG, it would be easy to alter the
program to cope with the new rules.

But there is a problem: the program doesn’t use the input sentence
to guide the search. Make a trace for the querys([a,man,shoots])

and you will see that the program chooses noun phrases and verb
phrases and only afterwards checks whether these can be combined to
form the sentence[a,man,shoots]. For example, Prolog will find that
[the,woman] is a noun phrase and[shoots,the,woman] a verb phrase
and only then will it check whether concatenating these lists happens
to yield [a,man,shoots], which of course it won’t. So, Prolog starts
to backtrack, and the next thing it will try is whether concatenating
the noun phrase[the,woman] and the verb phrase[shoots,the,man]
happens to yield[a,man,shoots], another non-starter. It will go on
like this until it (finally) produces the noun phrase[a,man] and the
verb phrase[shoots]. The problem is that the goalsnp(X) and vp(Y)

are called with uninstantiated variables as arguments.
So, how about changing the rules in such a way thatappend becomes

the first goal:

s(Z):- append(X,Y,Z), np(X), vp(Y).

np(Z):- append(X,Y,Z), det(X), n(Y).

vp(Z):- append(X,Y,Z), v(X), np(Y).

vp(Z):- v(Z).

det([the]).

det([a]).
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n([woman]).

n([man]).

v([shoots]).

Here we first use append/3 to split up the input list. This
instantiates the variablesX and Y, so that the other goals are all called
with instantiated arguments. However, this program is still not very
appealing: it usesappend/3 a lot and, even worse, it usesappend/3
with uninstantiated variables in the first two arguments. Wesaw in the
previous chapter that this is a source of inefficiency. And indeed, the
performance of this recogniser is very bad. It is revealing to trace
through what actually happens when this program analyses a sentence
such asa woman shoots a man. As you will see, relatively few of the
steps are devoted to the real task of recognising the sentences: most are
devoted to usingappend/3 to decompose lists. This isn’t much of a
problem for our little grammar, but it certainly would be if we were
working with a more realistic grammar capable of generatinga large
number of sentences. We need to do something about this.

CFG recognition using difference lists

A more efficient implementation can be obtained by making useof
difference lists. This is a sophisticated (and, once you’ve grasped it,
beautiful) Prolog technique that can be used for a variety ofpurposes.

The key idea underlying difference lists is to represent theinformation
about grammatical categories not as a single list, but as thedifference
between two lists. For example, instead of representinga woman shoots
a man as [a,woman,shoots,a,man] we can represent it as the pair of
lists

[a,woman,shoots,a,man] [].

Think of the first list aswhat needs to be consumed(or if you prefer:
the input list), and the second list aswhat we should leave behind(or:
the output list). Viewed from this (rather procedural) perspective the
difference list

[a,woman,shoots,a,man] [].

represents the sentencea woman shoots a manbecause it says:If I
consume all the symbols on the left, and leave behind the symbols on
the right, then I have the sentence I am interested in.That is, the
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sentence we are interested in is the difference between the contents of
these two lists.

That’s all we need to know about difference lists to rewrite our
recogniser. If we simply bear in mind the idea of consuming something,
and leaving something behind in mind, we obtain the following recogniser:

s(X,Z):- np(X,Y), vp(Y,Z).

np(X,Z):- det(X,Y), n(Y,Z).

vp(X,Z):- v(X,Y), np(Y,Z).

vp(X,Z):- v(X,Z).

det([the|W],W).

det([a|W],W).

n([woman|W],W).

n([man|W],W).

v([shoots|W],W).

Consider these rules carefully. For example, thes rule says: I know
that the pair of listsX and Z represents a sentence if (1) I can consume
X and leave behind aY, and the pairX and Y represents a noun phrase,
and (2) I can then go on to consumeY leaving Z behind, and the pair
Y Z represents a verb phrase. The np rule and the second of thevp
rules work similarly.

Moreover, the same idea underlies the way this grammar handles the
words. For example

n([man|W],W).

means we are handlingman as the difference between[man|W] and W.
After all, the difference between what is consumed and what is left
behind is precisely the wordman.

Now, at first this code may be harder to grasp than our previous
recogniser. But note that we have gained something important: we
haven’t usedappend/3. In the difference list based recogniser, it simply
isn’t needed, and this makes a big difference.

How do we use this recogniser? Well, here’s how to recognise
sentences:
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?- s([a,woman,shoots,a,man],[]).

yes

This asks whether we can get ans by consuming the symbols
in [a,woman,shoots,a,man], leaving nothing behind. Similarly, to
generate all the sentences in the grammar, we ask

?- s(X,[]).

This asks: what values can you give toX, such that we get ans by
consuming the symbols inX, leaving nothing behind?

The queries for other grammatical categories also work the same way.
For example, to find out ifa woman is a noun phrase we ask:

?- np([a,woman],[]).

And we generate all the noun phrases in the grammar as follows:

?- np(X,[]).

You should trace what happens when this program analyses a sentence
such asa woman shoots a man. As you will see, it is a lot more
efficient than ourappend/3 based program. Moreover, as no use is
made ofappend/3, the trace is a lot easier to grasp. So we have taken
a big step forward.

On the other hand, it has to be admitted that the second recogniser
is not as easy to understand, at least at first, and it’s a pain having to
keep track of all those difference list variables. If only itwere possible
to have a recogniser as simple as the first and as efficient as the second.
And in fact, it is possible: this is where DCGs come in.

2 Definite Clause Grammars
So, what are DCGs? Quite simply, a nice notation for writing grammars
that hides the underlying difference list variables. Let’slook at three
examples.

A first example

As our first example, here’s our little grammar written as a DCG:

s --> np,vp.

np --> det,n.

vp --> v,np.
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vp --> v.

det --> [the].

det --> [a].

n --> [woman].

n --> [man].

v --> [shoots].

The link with the original context free grammar should be transparent:
this is definitely the most user-friendly notation we have used yet. But
how do we use this DCG? In fact, we use it inexactly the same way as
we used our difference list recogniser. For example, to find out whether
a woman shoots a manis a sentence, we pose the query:

?- s([a,woman,shoots,a,man],[]).

That is, just as in the difference list recogniser, we ask whether we
can get ans by consuming the symbols in[a,woman,shoots,a,man],
leaving nothing behind.

Similarly, to generate all the sentences in the grammar, we pose the
query:

?- s(X,[]).

This asks what values we can give toX, such that we get ans by
consuming the symbols inX, leaving nothing behind.

Moreover, the queries for other grammatical categories also work the
same way. For example, to find out ifa woman is a noun phrase we
pose the query:

?- np([a,woman],[]).

And we generate all the noun phrases in the grammar as follows:

?- np(X,[]).

What’s going on? Quite simply, this DCGis our difference list
recogniser! To put it another way, DCG notation is essentially syntactic
sugar, user-friendly notation that lets us write grammars in a natural
way. But Prolog translates this notation into the kinds of difference lists
discussed before. So we have the best of both worlds: a nice simple
notation for working with, and the efficiency of difference lists.
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There is an easy way to see what Prolog translates DCG rules into.
Suppose you are working with the DCG just given (that is, suppose that
Prolog has already consulted the rules). Then if you pose thequery:

?- listing(s).

you will get the response

s(A,B) :-

np(A,C),

vp(C,B).

This is what Prolog has translateds --> np,vp into. Note that (apart
from the choice of variables) this is exactly the differencelist rule we
used in our second recogniser.

Similarly, if you pose the query

?- listing(np).

you will get

np(A,B) :-

det(A,C),

n(C,B).

This is what Prolog has translatednp --> det,n into. Again (apart
from the choice of variables) this is the difference list rule we used in
our second recogniser.

To get a complete listing of the translations of all the rules, simply
type

?- listing.

There is one thing you may observe. Some Prolog implementations
translate rules such as

det --> [the].

not into

det([the|W],W).

which was the form we used in our difference list recogniser,but into

det(A,B) :-

’C’(A,the,B).

But although the notation is different, the idea is the same.This says
you can get a listB from a list A by consuming athe. That is, once
again this is a difference list representation. Note that’C’ is an atom.
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Adding recursive rules

Our original context free grammar generated only 20 sentences. However
it is easy to write context free grammars that generate infinitely many
sentences: simply use recursive rules. Here’s an example. Let’s add the
following rules to our little grammar:

s -> s conj s

conj -> and
conj -> or
conj -> but

This rule allows us to join as many sentences together as we like
using the wordsand, but, and or. So this grammar classifies sentences
such asThe woman shoots the man or the man shoots the womanas
grammatical.

Now, in principle it is easy to turn this grammar into a DCG. We
need merely add the rules

s --> s,conj,s.

conj --> [and].

conj --> [or].

conj --> [but].

But there is a problem lurking under the surface. What does Prolog
actually do with this DCG? Let’s have a look.

First, let’s add the new rules at thebeginningof the knowledge base,
before the rules --> np,vp. What happens if we then pose the query
s([a,woman,shoots],[])? Prolog immediately goes into a loop.

Can you see why? The point is this. Prolog translates DCG rules into
ordinary Prolog rules. If we place the recursive rules --> s,conj,s

in the knowledge base before the non-recursive rules --> np,vp then
the knowledge base will contain the following two Prolog rules, in this
order:

s(A, B) :-

s(A, C),

conj(C, D),

s(D, B).

s(A, B) :-

np(A, C),

vp(C, B).
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Now, from a declarative perspective this is fine, but from a procedural
perspective this is fatal. When it tries to use the first rule,Prolog
immediately encounters the goals(A,C), which it then tries to satisfy
using the first rule, whereupon it immediately encounters the goal
s(A, C), which it then tries to satisfy using the first rule, whereupon it
immediately encounters the goals(A, C), and so on. In short, it goes
into an infinite loop and does no useful work.

So let’s add the recursive rules --> s,conj,s at the end of
the knowledge base, so that Prolog always encounters the translation
of the non-recursive rule first. What happens now, when we pose
the query s([a,woman,shoots],[])? Well, now Prolog handles this
and gives an answer. But what happens when we pose the query
s([woman,shoot],[])? Note that this is an ungrammatical sentence
that is not accepted by our grammar. Once again, Prolog gets into an
infinite loop. Since it is impossible to recognise[woman,shoot] as a
sentence consisting of a noun phrase and a verb phrase, Prolog tries
to analyse it with the rules --> s,conj,s, and ends up in the same
unending loop as before.

In short, we are having the same problems that we met when we
discussed recursion, and rule and goal ordering, in Chapter3. In a
nutshell, s --> s,conj,s translates into a left-recursive rule, and that’s
bad news. Moreover, as we saw earlier, wecan’t fix such problems
simply by tinkering with the rule ordering: the way out of such
difficulties is to change the goal order of the recursive ruleso that the
recursive goal is not the first one in the body of the rule. Thatis,
ideally we should rewrite the rule so that it is no longer left-recursive.

Nice idea, but unfortunately, it is not an option here. Why not?
Because the order of the goals determines the order of the words in the
sentence! It makes an important difference, for example, whether our
grammar acceptsthe woman shoots the man and the man shoots the
woman (s --> s,conj,s) or whether it acceptsand the woman shoots
the man the man shoots the woman(s --> conj,s,s).

But there is a way out. The standard solution is to introduce anew
non-terminal symbol and rewrite the DCG. We could, for example, use
the categorysimple_s for sentences without embedded sentences. Our
grammar would then look like this:

s --> simple_s.

s --> simple_s,conj,s.

simple_s --> np,vp.

np --> det,n.

vp --> v,np.
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vp --> v.

det --> [the].

det --> [a].

n --> [woman].

n --> [man].

v --> [shoots].

conj --> [and].

conj --> [or].

conj --> [but].

As you should check, Prolog doesn’t get into infinite loops with this
grammar as it did with the previous one, so from a computational
perspective the solution is satisfactory. But it leaves something to be
desired from a linguistic perspective. The DCG that looped was at
least faithful to the linguistic intuitions about the structure of sentences
made usingand, but, and or. The new DCG imposes an additional
layer of structure that is motivated by processing rather than linguistic
considerations; we are no longer simply turning grammars into Prolog.

The moral is: DCGs aren’t magic. They are a nice notation, butyou
can’t expect to write down an arbitrary CFG as a DCG and have itrun
without problems. DCG rules are ordinary Prolog rules in disguise, and
this means that you must pay attention to what your Prolog interpreter
is going to do with them. And in particular, you have to keep aneye
out for left-recursion.

A DCG for a simple formal language

As our last example, we shall define a DCG for the formal language
anbn. What is this language? And what is a formal language anyway?

A formal language is simply a set of strings. The term “formal
language” is intended to contrast with the term “natural language”:
whereas natural languages are languages that human beings actually
use, formal languages are mathematical objects that computer scientists,
logicians, and mathematicians define and study for various purposes.

A simple example of a formal language isanbn. The words in this
language are built up from two symbols: the symbola and the symbol
b. In fact, the languageanbn consists of all strings made up from these
two symbols that have the following form: the string must consist of an
unbroken block ofas of length n, followed by an unbroken block of
bs of length n, and nothing else. So the stringsab, aabb, aaabbb and
aaaabbbball belong to anbn. (Note that the empty string belongs to
anbn too: after all, the empty string consists of a block ofas of length
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zero followed by a block ofbs of length zero.) On the other hand,aba
and abba do not belong toanbn.

Now, it is easy to write a context free grammar that generatesthis
language:

s -> ǫ

s -> l s r

l -> a

r -> b

The first rule says that ans can be realised as nothing at all. The
second rule says that ans can be made up of anl (for left) element,
followed by an s, followed by an r (for right) element. The last two
rules say thatl elements andr elements can be realised asas and bs
respectively. It should be clear that this grammar really does generate
all and only the elements ofanbn, including the empty string.

Moreover, it is easy to turn this grammar into DCG. We can do so
as follows:

s --> [].

s --> l,s,r.

l --> [a].

r --> [b].

Note that the second rule is recursive (but, thankfully, notleft recursive).
And in fact this DCG works exactly as we would hope. For example,
to the query

?- s([a,a,a,b,b,b],[]).

we get the answer yes, while to the query

?- s([a,a,a,b,b,b,b],[]).

we get the answer no. The query

?- s(X,[]).

enumerates the strings in the language, starting from[].

3 Exercises

Exercise 7.1. Suppose we are working with the following DCG:E
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s --> foo,bar,wiggle.

foo --> [choo].

foo --> foo,foo.

bar --> mar,zar.

mar --> me,my.

me --> [i].

my --> [am].

zar --> blar,car.

blar --> [a].

car --> [train].

wiggle --> [toot].

wiggle --> wiggle,wiggle.

Write down the ordinary Prolog rules that correspond to these DCG
rules. What are the first three responses that Prolog gives tothe query
s(X,[])?

Exercise 7.2. The formal languageanbn − {ǫ} consists of all the E
strings in anbn except the empty string. Write a DCG that generates
this language.

Exercise 7.3. Let anb2n be the formal language which contains all E
strings of the following form: an unbroken block ofas of length n
followed by an unbroken block ofbs of length 2n, and nothing else.
For example,abb, aabbbb, and aaabbbbbbbelong toanb2n, and so does
the empty string. Write a DCG that generates this language.

4 Practical Session
The purpose of this session is to help you get familiar with DCGs,
difference lists, and the relation between them, and to giveyou some
experience in writing basic DCGs. As you will learn in the following
chapter, there is more to DCGs than the ideas just discussed.Nonetheless,
what you have learned so far is certainly the core, and it is important
that you are comfortable with the basic ideas before moving on.

First some keyboard exercises:

1. Type in or download the simpleappend/3 based recognisers
discussed in the text, and then run some traces. As you will see,
we were not exaggerating when we said that their performanceis
poor. Even for such simple sentences asThe woman shot a man
you will see that the traces are long and difficult to follow.

2. Next, type in or download our second recogniser, the one based on
difference lists, and run more traces. As you will see, thereis a
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dramatic gain in efficiency. Moreover, you will see that the traces
are very simple to understand, especially when compared with the
monsters produced by theappend/3 based implementations.

3. Next, type in or download the DCG discussed in the text. Type
listing so that you can see what Prolog translates the rules to.
How does your system translate rules of the formDet --> [the]?
That is, does it translate them to rules likedet([the|X],X), or
does is make use of rules containing the’C’ predicate?

4. Now run some traces. Apart from variable names, the tracesyou
observe here should be very similar to the traces you observed
when running the difference list recogniser.

And now it’s time to write some DCGs:

1. The formal languageEven is very simple: it consists of all strings
containing an even number ofas, and nothing else. Note that the
empty stringǫ belongs toEven. Write a DCG that generatesEven.

2. The formal languageanb2mc2mdn consists of all strings of the
following form: an unbroken block ofas followed by an unbroken
block of bs followed by an unbroken block ofcs followed by an
unbroken block ofds, such that thea and d blocks are exactly
the same length, and theb and c blocks are also exactly the same
length and furthermore consist of an even number ofbs and cs
respectively. For example,ǫ, abbccd, and aabbbbccccddall belong
to anb2mc2mdn. Write a DCG that generates this language.

3. The language that logicians call “propositional logic over the
propositional symbolsp, q, and r” can be defined by the following
context free grammar:

prop -> p

prop -> q

prop -> r

prop -> ¬ prop

prop -> (prop ∧ prop)

prop -> (prop ∨ prop)

prop -> (prop → prop)

Write a DCG that generates this language. Actually, becausewe
don’t know about Prolog operators yet, you will have to make a
few rather clumsy looking compromises. For example, instead of
getting it to recognise
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¬(p → q)

you will have to get it recognise things like

[not, ’(’, p, implies, q, ’)’]

instead. We will learn in Chapter 9 how to deal with propositional
logic somewhat more naturally; in the meantime, write a DCG that
accepts a clumsy looking version of this language. Useor for ∨,
and and for ∧.





Chapter 8

More Definite Clause
Grammars

This chapter has two main goals:

1. To examine two important capabilities offered
by DCG notation: extra arguments and extra
goals.

2. To discuss the status and limitations of
DCGs.
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1 Extra Arguments
In the previous chapter we introduced basic DCG notation. But DCGs
offer more than we’ve seen so far. For a start, DCGs allow us tospecify
extra arguments. Extra arguments can be used for many purposes; we’ll
examine three.

Context free grammars with features

As a first example, let’s see how extra arguments can be used toadd
features to context-free grammars.

Here’s the DCG we worked with in the previous chapter:

s --> np,vp.

np --> det,n.

vp --> v,np.

vp --> v.

det --> [the].

det --> [a].

n --> [woman].

n --> [man].

v --> [shoots].

Now, suppose we wanted to deal with sentences like “She shoots
him”, and “He shoots her”. What should we do? Well, obviouslywe
should add rules saying that “he”, “she”, “him”, and “her” are pronouns:

pro --> [he].

pro --> [she].

pro --> [him].

pro --> [her].

Furthermore, we should add a rule saying that noun phrases can be
pronouns:

np --> pro.

In this new DCG any good? Well, up to a point, it works. For
example:

?- s([she,shoots,him],[]).

yes
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But there’s an obvious problem. The DCG will also accept a lotof
sentences that are clearly wrong, such as “A woman shoots she”, “Her
shoots a man”, and “Her shoots she”:

?- s([a,woman,shoots,she],[]).

yes

?- s([her,shoots,a,man],[]).

yes

?- s([her,shoots,she],[]).

yes

That is, the grammar doesn’t know that “she” and “he” aresubject
pronouns and cannot be used inobject position; thus “A woman shoots
she” is bad because it violates this basic fact about English. Moreover,
the grammar doesn’t know that “her” and “him” areobject pronouns
and cannot be used insubject position; thus “Her shoots a man” is bad
because it violates this constraint. As for “Her shoots she”, this manages
to get both matters wrong at once.

Now, it’s pretty obviouswhat we have to do to put this right: we
need to extend the DCG with information about which pronounscan
occur in subject position and which in object position. The interesting
question:how exactly are we to do this? First let’s look at a naive way
of correcting this, namely adding new rules:

s --> np_subject,vp.

np_subject --> det,n.

np_object --> det,n.

np_subject --> pro_subject.

np_object --> pro_object.

vp --> v,np_object.

vp --> v.

det --> [the].

det --> [a].

n --> [woman].

n --> [man].

pro_subject --> [he].
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pro_subject --> [she].

pro_object --> [him].

pro_object --> [her].

v --> [shoots].

Now this solution “works”. For example,

?- s([her,shoots,she],[]).

no

But neither computer scientists nor linguists would consider this a
good solution. The trouble is, a small addition to the lexicon has led
to quite a big change in the DCG. Let’s face it: “she” and “her”(and
“he” and “him”) are the same in a lot of respects. But to deal with
the property in which they differ (namely, in which positionthey can
occur in sentences) we’ve had to make big changes to the grammar: in
particular, we’ve doubled the number of noun phrase rules. If we had to
make further changes (for example, to cope with plural noun phrases)
things would get even worse. What we really need is a more delicate
programming mechanism that allows us to cope with such factswithout
being forced to add rules all the time. And here’s where the extra
arguments come into play. Look at the following grammar:

s --> np(subject),vp.

np(_) --> det,n.

np(X) --> pro(X).

vp --> v,np(object).

vp --> v.

det --> [the].

det --> [a].

n --> [woman].

n --> [man].

pro(subject) --> [he].

pro(subject) --> [she].

pro(object) --> [him].

pro(object) --> [her].

v --> [shoots].
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The key thing to note is that this new grammar contains only one
new noun phrase rule. In fact, it is very similar to the first grammar
that we wrote, except that now the symbolnp is associated with a new
argument, eithersubject, object, _ or X. A linguist would say that
we’ve added features to distinguish various kinds of noun phrase. In
particular, note the four rules for the pronouns. Here we’veused the
extra argument to state which pronouns can occur in subject position,
and which can occur in object position. Thus these rules are the most
fundamental, for they give us the basic facts about how thesepronouns
can be used.

So what do the other rules do? Well, intuitively, the rule

np(X) --> pro(X).

uses the extra argument (the variableX) to pass these basic facts about
pronouns up to noun phrases built out of them: because the variable X

is used as the extra argument for both the np and the pronoun, Prolog
unification will guarantee that they will be given the same value. In
particular, if the pronoun we use is “she” (in which caseX=subject),
then the np will (through its extra argumentX=subject) be marked as
a subject np. On the other hand, if the pronoun we use is “her” (in
which caseX=object), then the extra argument for np will be marked
X=object too. And this, of course, is exactly the behaviour we want.

On the other hand, although noun phrases built using the rule

np(_) --> det,n.

also have an extra argument, we’ve used the anonymous variable as
its value. Essentially this meanscan be either, which is correct, for
expressions built using this rule (such as “the man” and “a woman”) can
be used in both subject and object position.

Now consider the rule

vp --> v,np(object).

This says that to apply this rule we need to use a noun phrase whose
extra argument unifies withobject. This can beeither noun phrases
built from object pronounsor noun phrases such as “the man” and
“a woman” which have the anonymous variable as the value of the
extra argument. Crucially, pronouns marked has havingsubject as the
value of the extra argumentcan’t be used here: the atomsobject and
subject don’t unify. Note that the rule

s --> np(subject),vp.
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works in an analogous fashion to prevent noun phrases made ofobject
pronouns from ending up in subject position.

This works. You can check it out by posing the query:

?- s(X,[]).

As you step through the responses, you’ll see that only acceptable
English is generated.

But while the intuitive explanation just given is correct, what’s really
going on? The key thing to remember is that DCG rules are just a
convenient abbreviation. For example, the rule

s --> np,vp.

is really syntactic sugar for

s(A,B) :-

np(A,C),

vp(C,B).

That is, as we learned in the previous chapter, the DCG notation is
a way of hiding the two arguments responsible for the difference list
representation, so that we don’t have to think about them. Wework with
the nice user-friendly notation, and Prolog translates it into the clauses
just given.

Ok, so we obviously need to ask what

s --> np(subject),vp.

translates into. Here’s the answer:

s(A,B) :-

np(subject,A,C),

vp(C,B).

As should now be clear, the name “extra argument” is a good one:
as this translation makes clear, thesubject symbol really is just one
more argument in an ordinary Prolog rule. Similarly, our noun phrase
DCG rules translate into

np(A,B,C) :-

det(B,D),

n(D,C).

np(A,B,C) :-

pro(A,B,C).
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Note that both rules havethree arguments. The first,A, is the extra
argument, and the last two are the ordinary, hidden DCG arguments (the
two hidden arguments are always the last two arguments).

Incidentally, how do you think we would use the grammar to list the
grammatical noun phrases? Well, if we had been working with the DCG
rule np --> det,n (that is, a rule with no extra arguments) we would
have made the query

?- np(NP,[]).

So, in view of what we have just learned about extra arguments, it’s
not too surprising that we need to pose the query

?- np(X,NP,[]).

when working with our new DCG. And here’s what the response would
be:

X = _2625

NP = [the,woman] ;

X = _2625

NP = [the,man] ;

X = _2625

NP = [a,woman] ;

X = _2625

NP = [a,man] ;

X = subject

NP = [he] ;

X = subject

NP = [she] ;

X = object

NP = [him] ;

X = object

NP = [her] ;

no



146 Learn Prolog Now!

One final remark: don’t be misled by this simplicity of our example
grammar. Extra arguments can be used to cope with some complex
syntactic problems. DCGs are no longer the state-of-the-art grammar
development tools they once were, but they’re not toys either. Once you
know about writing DCGs with extra arguments, you can write some
fairly sophisticated grammars.

Building parse trees

So far, the programs we have discussed have been able torecognise
grammatical structure (that is, they could correctly answer yes or no
when asked whether the input was a sentence, a noun phrase, and so
on) and togenerategrammatical output. This is pleasant, but we would
also like to be able toparse. That is, we would like our programs not
only to tell us which sentences are grammatical, but also to give us an
analysis of their structure. In particular, we would like tosee the trees
the grammar assigns to sentences.

Well, using only standard Prolog tools we can’t actually draw nice
pictures of trees, but wecan build data structures which describe trees
in a clear way. For example, corresponding to the tree

s

np

det

a

n

woman

vp

v

shoots

we could have the following term:

s(np(det(a),n(woman)),vp(v(shoots))).

Sure: it doesn’tlook as nice, but all the information in the picture is
there. And, with the aid of a decent graphics package, it would be easy
to turn this term into a picture.

But how do we get DCGs to build such terms? Actually, it’s pretty
easy. After all, in effect a DCG has to work out what the tree structure
is when recognising a sentence. So we just need to find a way of
keeping track of the structure that the DCG finds. We do this byadding
extra arguments. Here’s how:

s(s(NP,VP)) --> np(NP),vp(VP).
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np(np(DET,N)) --> det(DET),n(N).

vp(vp(V,NP)) --> v(V),np(NP).

vp(vp(V)) --> v(V).

det(det(the)) --> [the].

det(det(a)) --> [a].

n(n(woman)) --> [woman].

n(n(man)) --> [man].

v(v(shoots)) --> [shoots].

What’s going on here? Essentially we are building the parse trees for
the syntactic categories on the left hand side of the rules out of the
parse trees for the syntactic categories on the right hand side of the
rules. Consider the rulevp(vp(V,NP)) --> v(V),np(NP). When we
make a query using this DCG, theV in v(V) and theNP in np(NP) will
be instantiated to terms representing parse trees. For example, perhapsV
will be instantiated to

v(shoots)

and NP will be instantiated to

np(det(a),n(woman)).

What is the term corresponding to a vp made out of these two structures?
Obviously it should be this:

vp(v(shoots),np(det(a),n(woman))).

And this is precisely what the extra argumentvp(V,NP) given in the
rule vp(vp(V,NP)) --> v(V),np(NP) returns to us: a term whose
functor is vp, and whose first and second arguments are the values of
V and NP respectively. To put it informally: it plugs theV and theNP
terms together under avp functor.

To parse the sentence “A woman shoots” we pose the query:

?- s(T,[a,woman,shoots],[]).

That is, we ask for the extra argumentT to be instantiated to a parse
tree for the sentence. And we get:

T = s(np(det(a),n(woman)),vp(v(shoots)))

yes



148 Learn Prolog Now!

Furthermore, we can generate all parse trees by making the following
query:

?- s(T,S,[]).

The first three responses are:

T = s(np(det(the),n(woman)),

vp(v(shoots),np(det(the),n(woman))))

S = [the,woman,shoots,the,woman] ;

T = s(np(det(the),n(woman)),

vp(v(shoots),np(det(the),n(man))))

S = [the,woman,shoots,the,man] ;

T = s(np(det(the),n(woman)),

vp(v(shoots),np(det(a),n(woman))))

S = [the,woman,shoots,a,woman]

In short, we have just seen an elegant (and useful) example ofhow to
build structure using unification.

Extra arguments can also be used to build semantic representations.
Now, we did not say anything about what the words in our little
DCG mean. In fact, nowadays a lot is known about the semantics
of natural languages, and it is surprisingly easy to build semantic
representations which partially capture the meaning of sentences or even
entire discourses. Such representations are usually expressions of some
formal language (for example first-order logic, discourse representation
structures, or a database query language) and they are usually built up
compositionally. That is, the meaning of each word is expressed in
the formal language; this meaning is given as an extra argument in
the DCG entries for the individual words. Then, for each rulein the
grammar, an extra argument shows how to combine the meaning of the
two subcomponents. For example, to the rules --> np, vp we would
add an extra argument stating how to combine thenp meaning and the
vp meaning to form thes meaning. Although somewhat more complex,
the semantic construction process is quite like the way we built up the
parse tree for the sentence from the parse tree of its subparts.1

1For a detailed account of how to do this, seeRepresentation and Inference for
Natural Language: A First Course in Computational Semantics, Patrick Blackburn and
Johan Bos, CSLI Publications, 2005.
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Beyond context free languages

In the previous chapter we introduced DCGs as a useful Prologtool
for representing and working with context free grammars. Now, this is
certainly a good way of thinking about DCGs, but it’s not the whole
story. For the fact of the matter is: DCGs can deal with a lot more
than just context free languages. The extra arguments we have been
discussing (and indeed, the extra goals we shall introduce shortly) give
us the tools for coping with any computable language whatsoever. We
shall illustrate this by presenting a simple DCG for the formal language
anbncn\{ǫ}.

The formal languageanbncn\{ǫ} consists of all non-null strings made
up of as, bs, andcs which consist of an unbroken block ofas, followed
by an unbroken block ofbs, followed by an unbroken block ofcs, all
three blocks having the same length. For example,abc, and aabbcc and
aaabbbccc all belong to anbncn\{ǫ}.

The interesting thing about this language is that it isnot context free.
Try whatever you like, you will not succeed in writing a context free
grammar that generates precisely these strings. Proving this would take
us too far afield, but the proof is not particularly difficult,and you can
find it in many books on formal language theory.

On the other hand, as we shall now see, it is very easy to write
a DCG that generates this language. Just as we did in the previous
chapter, we shall represent strings as lists; for example, the string abc

will be represented using the list[a,b,c]. Given this convention, here’s
the DCG we need:

s(Count) --> ablock(Count),bblock(Count),cblock(Count).

ablock(0) --> [].

ablock(succ(Count)) --> [a],ablock(Count).

bblock(0) --> [].

bblock(succ(Count)) --> [b],bblock(Count).

cblock(0) --> [].

cblock(succ(Count)) --> [c],cblock(Count).

The idea underlying this DCG is fairly simple: we use an extra
argument to keep track of the length of the blocks. Thes rule simply
says that we want a block ofas followed by a block ofbs followed by
block of cs, and all three blocks are to have the same length, namely
Count.
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What should the values ofCount be? The obvious answer is:1, 2,
3, 4, and so on. But as yet we don’t know how to mix DCGs and
arithmetic, so this isn’t very helpful. Fortunately, as this DCG shows,
there’s an easier (and more elegant) way. Represent the number 0 by
0, the number 1 bysucc(0), the number 2 bysucc(succ(0)), the
number 3 bysucc(succ(succ(0))), and so on, just as we did it in
Chapter 3 (as we said in Chapter 3, you can readsucc as “successor
of”). This choice of notation enables us to count using unification.

And this is precisely what our new DCG does. For example, suppose
we pose the following query:

?- s(Count,L,[]).

which asks Prolog to generate the listsL of symbols that belong to this
language, and to give the value ofCount needed to produce each item.
Then the first four responses are:

Count = 0

L = [] ;

Count = succ(0)

L = [a, b, c] ;

Count = succ(succ(0))

L = [a, a, b, b, c, c] ;

Count = succ(succ(succ(0)))

L = [a, a, a, b, b, b, c, c, c]

The value ofCount clearly corresponds to the length of the blocks.
So: DCGs are not just a tool for working with context free grammars.

They are strictly more powerful than that, and (as we’ve justseen) part
of the extra power comes from the use of extra arguments.

2 Extra Goals
Any DCG rule is really syntactic sugar for an ordinary Prologrule. So
it’s not really too surprising that we’re allowed to make useof extra
arguments. Similarly, it shouldn’t come as too much of a surprise that
we can call any Prolog predicate whatsoever from the right hand side
of a DCG rule.

The DCG of the previous section can, for example, be adapted to
work with Prolog numbers (instead of the successor representation of
numbers) by using calls to Prolog’s built-in arithmetic functionality. We
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simply count how manyas, bs, andcs have been generated. Here’s the
code:

s --> ablock(Count),bblock(Count),cblock(Count).

ablock(0) --> [].

ablock(NewCount) --> [a],ablock(Count),

{NewCount is Count + 1}.

bblock(0) --> [].

bblock(NewCount) --> [b],bblock(Count),

{NewCount is Count + 1}.

cblock(0) --> [].

cblock(NewCount) --> [c],cblock(Count),

{NewCount is Count + 1}.

As this example suggests, extra goals can be written (anywhere) on
the right side of a DCG rule, but must be placed between curly brackets.
When Prolog encounters such curly brackets while translating a DCG
into its internal representation, it just takes the extra goals specified
between the curly brackets over into the translation. So, the second rule
for the non-terminalablock above would be translated as follows:

ablock(NewCount,A,B):-

’C’(A, a, C),

ablock(Count, C, B),

NewCount is Count + 1.

Incidentally, if you play around with this DCG, you will find that
there are actually some problems with it. In contrast to the one that we
saw in the last section, this new version only works correctly when used
in the recognition mode. If you try to generate with it, it will at some
point enter an infinite loop. We won’t bother to fix this problem here
(apart from anything else, we find the earliersucc based approach more
elegant).

The possibility of adding arbitrary Prolog goals to the right hand side
of DCG rules, makes DCGs very powerful (it means that we can do
anything that we can do in plain Prolog). In general, however, this
capability is not used much, which tends to suggest that the basic DCG
notation is well designed. There is, however, one classic application for
extra goals in computational linguistics: with the help of extra goals, we
can neatly separate grammar rules and lexical information.Let’s see how.
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Separating rules and lexicon

We are going to separate rules and lexicon. That is, we are going
to eliminate all mention of individual words in our DCGs and instead
record all the information about individual words separately in a lexicon.
To see what is meant by this, let’s return to our basic grammar:

np --> det,n.

vp --> v,np.

vp --> v.

det --> [the].

det --> [a].

n --> [woman].

n --> [man].

v --> [shoots].

We are now going to write a DCG that generates exactly the same
language, but in which no rule mentions any individual word.All the
information about individual words will be recorded separately.

Here is an example of a (very simple) lexicon. Lexical entries are
encoded by using a predicatelex/2 whose first argument is a word,
and whose second argument is a syntactic category.

lex(the,det).

lex(a,det).

lex(woman,n).

lex(man,n).

lex(shoots,v).

And here is a simple grammar that could go with this lexicon. In
essence it’s the same as the previous one. In fact, the only rules that
have changed are those that mentioned specific words, that is, the det,
n, and v rules.

np --> det,n.

vp --> v,np.

vp --> v.

det --> [Word],{lex(Word,det)}.
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n --> [Word],{lex(Word,n)}.

v --> [Word],{lex(Word,v)}.

Consider the newdet rule. This rule part says “adet can consist of
a list containing a single elementWord” (note that Word is a variable).
Then the extra goal adds the crucial stipulation: “so long asWord unifies
with something that is listed in the lexicon as a determiner”. With our
present lexicon, this means thatWord must be matched either with the
word “a” or “the”. So this single rule replaces the two previous DCG
rules for det.

This explains the “how” of separating rules from lexicon, but it
doesn’t explain the “why”. Is it really so important? Is thisnew way of
writing DCGs really that much better?

The answer is an unequivocal yes! It’smuch better, and for at least
two reasons.

The first reason is theoretical. Arguably rules should not mention
specific lexical items. The purpose of rules is to listgeneral syntactic
facts, such as the fact that sentence can be made up of a noun phrase
followed by a verb phrase. The rules fors, np, and vp describe such
general syntactic facts, but the old rules fordet, n, and v don’t. Instead,
the old rules simply list particular facts: that “a” is a determiner, that
“the” is a determiner, and so on. From theoretical perspective it is much
neater to have a single rule that says “anything is a determiner (or a
noun, or a verb, or any other grammatical category) if it is listed as
such in the lexicon”. And this, of course, is precisely what our new
DCG rules say.

The second reason is more practical. One of the key lessons
computational linguists have learnt over the last twenty orso years is
that the lexicon is by far the most interesting, important (and expensive!)
repository of linguistic knowledge. Bluntly, if you want toget to grips
with natural language from a computational perspective, you need to
know a lot of words, and you need to know a lot about them.

Now, our little lexicon, with its simple two-placelex entries, is a
toy. But a real lexicon is (most emphatically!) not. A real lexicon is
likely to be very large (it may contain hundreds of thousandsof words)
and moreover, the information associated with each word is likely to be
very rich. Our lex entries give only the syntactical category of each
word, but a real lexicon will give much more, such as information about
its phonological, morphological, semantic, and pragmaticproperties.

Because real lexicons are big and complex, from a software engineering
perspective it is best to write simple grammars that have a simple,
well-defined way, of pulling out the information they need from vast
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lexicons. That is, grammars should be thought of as separateentities
which can access the information contained in lexicons. We can then use
specialised mechanisms for efficiently storing the lexiconand retrieving
data from it.

Our new DCG rules, though simple, illustrate the basic idea.The
new rules really do just list general syntactic facts, and the extra goals
act as an interface to our lexicon that lets the rules find exactly the
information they need. Furthermore, we now take advantage of Prolog’s
first argument indexing which makes looking up a word in the lexicon
more efficient. First argument indexing is a technique for making
Prolog’s knowledge base access more efficient. If in the query the first
argument is instantiated it allows Prolog to ignore all clauses where the
first argument’s functor and arity is different. This means,for example,
that we can get all the possible categories ofman immediately without
having to even look at the lexicon entries for all the other hundreds or
thousands of words that we might have in our lexicon.

3 Concluding Remarks
We now have a fairly useful picture of what DCGs are and what they
can do for us. To conclude, let’s think about them from a somewhat
higher level, from both a formal and a linguistic perspective.

First the formal remarks. For the most part, we have presented
DCGs as a simple tool for encoding context free grammars (or context
free grammars enriched with features such assubject and object). But
DCGs go beyond this. We saw that it was possible to write a DCG
that generated a language that was not context free. In fact,any
program whatsoevercan be written in DCG notation. That is, DCGs
are a full-fledged programming language in their own right (they are
Turing-complete, to use the proper terminology). And although DCGs
are usually associated with linguistic applications, theycan be useful for
other purposes.

How good are DCGs from a linguistic perspective? Well, mixed.
At one stage (in the early 1980s) they were pretty much state of the
art. They made it possible to code complex grammars in a clearway,
and to explore the interplay of syntactic and semantic ideas. Certainly
any history of parsing in computational linguistics would give DCGs an
honourable mention.

Nonetheless, DCGs have drawbacks. For a start, their tendency to
loop when the goal ordering is wrong (we saw an example in the
previous chapter when we added a left-recursive rule for conjunctions)
is annoying; wedon’t want to think about such issues when writing
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serious grammars. Furthermore, while the ability to add extra arguments
is useful, if we need to use lots of them (and for big grammars we
will) it is a rather clumsy mechanism.

It is important to notice, however, that these problems comeup
because of the way Prolog interprets DCG rules. They are not inherent
to the DCG notation. Any of you who have studied parsing algorithms
probably know that all top-down parsers loop on left-recursive grammars.
So, it is not surprising that Prolog, which interprets DCGs in a top-down
fashion, loops on the left-recursive grammar rules --> s conj s. If
we used a different strategy to interpret DCGs, for example abottom-up
strategy, we would not run into the same problem. Similarly,if we
didn’t use Prolog’s built-in interpretation of DCGs, we could use the
extra arguments for a more sophisticated specification of features, one
that would facilitate the use of large feature structures.

Summing up, nowadays DCGs are probably best viewed as a nice
notation for defining context free grammars enhanced with some features,
a notation that (ignoring left-recursion) doubles as a parser/recogniser.
That is, they are best viewed as a convenient tool for testingnew
grammatical ideas, or for implementing reasonably complexgrammars
for particular applications. DCGs are no longer state of theart, but
they are useful. Even if you have never programmed before, simply by
using what you have learned so far you are ready to start experimenting
with reasonably sophisticated grammar writing. With a conventional
programming language (such as C++ or Java) it simply wouldn’t be
possible to reach this stage so soon. Things would be easier in functional
languages (such as Lisp, Caml, or Haskell), but even so, it isdoubtful
whether beginners could do so much so early.

4 Exercises

Exercise 8.1. Here’s our basic DCG: E

s --> np,vp.

np --> det,n.

vp --> v,np.

vp --> v.

det --> [the].

det --> [a].
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n --> [woman].

n --> [man].

n --> [apple].

n --> [pear].

v --> [eats].

Suppose we add the noun “men” (which is plural) and the verb
“know”. Then we would want a DCG which says that “The men eat” is
ok, “The man eats” is ok, “The men eats” is not ok, and “The man eat”
is not ok. Change the DCG so that it correctly handles these sentences.
Use an extra argument to cope with the singular/plural distinction.

Exercise 8.2. In the text, we only gave examples of DCG rules withE
one extra argument, but in fact you can add as many extra arguments
as you like. Here’s a DCG rule with three extra arguments:

kanga(V,R,Q) --> roo(V,R),jumps(Q,Q),{marsupial(V,R,Q)}.

Translate it into the form Prolog uses.

5 Practical Session
The purpose of Practical Session 8 is to help you get familiarwith
DCGs that make use of additional arguments and goals.

First some keyboard exercises:

1. Trace some examples using the DCG which uses extra arguments
to handle the subject/object distinction, the DCG which produces
parses, and the DCG which uses extra goals to separate lexicon
and rules. Make sure you fully understand the way all three DCGs
work.

2. Carry out traces on the DCG foranbncn given in the text
(the one that gave theCount variable the values0, succ(0),
succ(succ(0)), and so on). Try cases where the three blocks of
as, bs, and cs are indeed of the same length as well as queries
where this is not the case.

Now for some programming. We suggest the following mini-project,
which draws on all you have learned so far. Incidentally, in the Practical
Session at the end of Chapter 12 we will be asking to extend this work
even further, so do take this project seriously.
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1. First, bring together all the things we have learned aboutDCGs
for English into one DCG. In particular, in the text we saw how
to use extra arguments to deal with the subject/object distinction,
and in the exercises you were asked to use additional arguments
to deal with the singular/plural distinction. Write a DCG which
handles both. Moreover, write the DCG in such a way that it will
produce parse trees, and makes use of a separate lexicon.

2. Once you have done this, extend the DCG so that noun phrases
can be modified by adjectives and simple prepositional phrases (that
is, it should be able to handle noun phrases such as “the small
frightened woman on the table” or “the big fat cow under the
shower”). Then, further extend it so that the distinction between
first, second, and third person pronouns is correctly handled (both
in subject and object form).





Chapter 9

A Closer Look at Terms

This chapter has three main goals:

1. To introduce the == predicate.

2. To take a closer look at term structure.

3. To introduce operators.
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1 Comparing Terms
Prolog contains an important predicate for comparing terms, namely the
identity predicate==/2. As its name suggests, this tests whether two
terms are identical. However==/2 does not instantiate variables, thus it
is not the same as the unification predicate=/2. Let’s look at some
examples.

?- a == a.

yes

?- a == b.

no

?- a == ’a’.

yes

The reason Prolog gives these answers should be clear, though pay
attention to the last one. It tells us that, as far as Prolog isconcerned,
a and ’a’ are the same object.

Now let’s look at examples involving variables, and explicitly compare
== with the unification predicate=.

?- X==Y.

no

?- X=Y.

X = _2808

Y = _2808

yes

In these queries,X and Y are uninstantiatedvariables; we haven’t given
them any value. Thus the first answer is correct:X and Y are not
identical objects, so the== test fails. On the other hand, the use of=

succeeds, forX and Y can be unified.
Let’s now look at queries involvinginstantiatedvariables:

?- a=X, a==X.

X = a

yes

The first conjunct,a=X, binds X to a. Thus whena==X is evaluated, the
left hand side and right hand sides are exactly the same Prolog object,
and a==X succeeds.
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A similar thing happens in the following query:

?- X=Y, X==Y.

X = _4500

Y = _4500

yes

The conjunctX=Y first unifies the variablesX and Y. Thus when the
second conjunctX==Y is evaluated, the two variables are exactly the
same Prolog object, and the second conjunct succeeds as well.

It should now be clear that= and == are different, nonetheless there
is an important relation between them:== can be viewed as a stronger
test for equality between terms than=. That is, if term1 and term are
Prolog terms, and the queryterm1 == term2 succeeds, then the query
term1 = term2 will succeed too.

Another predicate worth knowing about is\==. This predicate is
defined so that it succeeds in precisely those cases where== fails. That
is, it succeeds whenever two terms arenot identical, and fails otherwise.
For example:

?- a \== a.

no

?- a \== b.

yes

?- a \== ’a’.

no

These answers should be understandable: they are simply theopposite
of the answers we got above when we used==. Now consider:

?- X \== a.

X = _3719

yes

Why this response? Well, we know from above that the queryX==a

fails (recall the way== treats uninstantiated variables). Thus the query
X\==a should succeed, and it does.

Similarly:
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?- X \== Y.

X = _798

Y = _799

yes

Again, we know from above that the queryX==Y fails, thus the query
X\==Y succeeds.

2 Terms with a Special Notation
Sometimes terms look different to us, but Prolog regards them as
identical. For example, when we comparea and ’a’, we see two
distinct strings of symbols, but Prolog treats them as the same. And
in fact there are many other cases where Prolog regards two strings as
being exactly the same term. Why? Because it makes programming
more pleasant. Sometimes the notation Prolog likes isn’t asuser-friendly
as the notation we would choose. So it is nice to be able to write
programs in the notation we find natural, and to let Prolog runthem in
the notation it prefers.

Arithmetic terms

The arithmetic predicates introduced earlier are a good example of this.
As was mentioned in Chapter 5,+, -, *, and / are functors, and
arithmetic expressions such as2+3 are terms. And this is not an
analogy. Apart from the fact that it can evaluate them with the help
of the is/2 predicate, Prolog views strings of symbols such as2+3

as being identical with ordinary complex terms. The following queries
make this clear:

?- 2+3 == +(2,3).

yes

?- +(2,3) == 2+3.

yes

?- 2-3 == -(2,3).

yes

?- *(2,3) == 2*3.

yes

?- 2*(7+2) == *(2,+(7,2)).

yes
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In short, the familiar arithmetic notation is there forour convenience.
Prolog doesn’t regard it as different from the usual term notation.

Similar remarks to the arithmetic comparison predicates<, =<, =:=,
=\=, > and >=:

?- (2 < 3) == <(2,3).

yes

?- (2 =< 3) == =<(2,3).

yes

?- (2 =:= 3) == =:=(2,3).

yes

?- (2 =\= 3) == =\=(2,3).

yes

?- (2 > 3) == >(2,3).

yes

?- (2 >= 3) == >=(2,3).

yes

These example show why it’s nice to have the user-friendly notation
(would you want to have to work with expressions like=:=(2,3)?).
Note, by the way, that we enclosed the left hand arguments in brackets.
For example, we didn’t ask

?- 2 =:= 3 == =:=(2,3).

we asked

?- (2 =:= 3) == =:=(2,3).

Why? Well, Prolog finds the query2 =:= 3 == =:=(2,3) confusing,
and let’s face it, can you blame it? It’s not sure whether to bracket this
expression as(2 =:= 3) == =:=(2,3) (which is what we want), or as
2 =:= (3 == =:=(2,3)). So we need to state the grouping explicitly.

One final remark. We have now introduced three rather similarlooking
symbols, namely=, ==, and =:= (and indeed, there are also\=, \==,
and =\=). Here’s a summary:
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= The unification predicate.
Succeeds if it can unify its arguments, fails otherwise.

\= The negation of the unification predicate.
Succeeds if= fails, and vice-versa.

== The identity predicate.
Succeeds if its arguments are identical, fails otherwise.

\== The negation of the identity predicate.
Succeeds if== fails, and vice-versa.

=:= The arithmetic equality predicate.
Succeeds if its arguments evaluate to the same integer.

=\= The arithmetic inequality predicate.
Succeeds if its arguments evaluate to different integers.

Lists as terms

Lists are another good example of Prolog working with one internal
representation, while giving us another, more user-friendly, notation to
work with. Let’s start with a quick look at the user-friendlylist notation
it provides (that is, the square brackets[ and ]). In fact, because Prolog
also offers the| constructor, there are many ways of writing the same
list, even at the user-friendly level:

?- [a,b,c,d] == [a|[b,c,d]].

yes

?- [a,b,c,d] == [a,b|[c,d]].

yes

?- [a,b,c,d] == [a,b,c|[d]].

yes

?- [a,b,c,d] == [a,b,c,d|[]].

yes

But how does Prolog view lists internally? In fact, it sees lists
as terms which are built out of two special terms, namely[], which
represents the empty list, and “.” (the full-stop), a functor of arity 2
which is used to build non-empty lists. The terms[] and . are called
list constructors.

This is how these constructors are used to build lists. Needless to
say, the definition is recursive:

• The empty list is the term[ ]. It has length 0.
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• A non-empty list is any term of the form.(term, list), where term
is any Prolog term, andlist is any list. If list has lengthn, then
.(term, list) has lengthn + 1.

Let’s make sure we fully understand this definition by working our
way through a few examples.

?- .(a,[]) == [a].

yes

?- .(f(d,e),[]) == [f(d,e)].

yes

?- .(a,.(b,[])) == [a,b].

yes

?- .(a,.(b,.(f(d,e),[]))) == [a,b,f(d,e)].

yes

?- .(.(a,[]),[]) == [[a]].

yes

?- .(.(.(a,[]),[]),[]) == [[[a]]].

yes

?- .(.(a,.(b,[])),[]) == [[a,b]].

yes

?- .(.(a,.(b,[])),.(c,[])) == [[a,b],c].

yes

?- .(.(a,[]),.(b,.(c,[]))) == [[a],b,c].

yes

?- .(.(a,[]),.(.(b,.(c,[])),[])) == [[a],[b,c]].

yes

Prolog’s internal notation for lists is not as user-friendly as the use
of the square bracket notation. But it’s not as bad as it seemsat first
sight. In fact, it works similarly to the| notation. It represents a
list in two parts: its first element (the head), and a list representing
the rest of the list (the tail). The trick is to read these terms as
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trees. The internal nodes of this tree are labeled with. and all have
two daughter nodes. The subtree under the left daughter represents
the first element of the list and the subtree under the right daughter
represents the rest of the list. For example, the tree representation of
.(a,.(.(b,.(c,[])),.(d,[]))), that is, [a, [b,c], d], looks like
this:

.

b .

c [ ]

.
[ ]d

.a

.

.(.(b, .(c,[ ])), .(d,[]))

.(d, [])

.(a, .(.(b,.(c,[ ])), .(d,[ ])))

.(b, .(c,[ ]))

.(c, [])

One final remark. Prolog is very polite. Not only are you free to
talk to it in the user-friendly notation, it will reply in thesame way:

?- .(f(d,e),[]) = Y.

Y = [f(d,e)]

yes

?- .(a,.(b,[])) = X, Z= .(.(c,[]),[]), W = [1,2,X].

X = [a,b]

Z = [[c]]

W = [1,2,[a,b]]

yes

3 Examining Terms
In this section, we will learn about some built-in predicates that let
us examine terms more closely. First, we will look at predicates that
test whether their arguments are terms of a certain type (forexample,
whether they are atoms or numbers). Then we will introduce predicates
that tell us something about the internal structure of complex terms.

Types of Terms

Remember what we said about Prolog terms in Chapter 1: there are four
different kinds, namely variables, atoms, numbers and complex terms.
Furthermore, atoms and numbers are grouped together under the name
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constants, and constants and variables constitute the simple terms. The
following tree diagram summarises this:

terms

simple terms

variables constants

atoms numbers

complex terms

Sometimes it is useful to be able to determine what type a given term
is. You might, for example, want to write a predicate that hasto deal
with different kinds of terms, but has to treat them in different ways.
Prolog provides several built-in predicates that test whether a given term
is of a certain type:

atom/1 Is the argument an atom?
integer/1 Is the argument an integer?
float/1 Is the argument a floating point number?
number/1 Is the argument an integer or a floating point number?
atomic/1 Is the argument a constant?
var/1 Is the argument an uninstantiated variable?
nonvar/1 Is the argument an instantiated variable or another term

that is not anuninstantiated variable?

Let’s see how they behave.

?- atom(a).

yes

?- atom(7).

no

?- atom(loves(vincent,mia)).

no

These three examples behave exactly as we would expect. But what
happens, when we callatom/1 with a variable as argument?

?- atom(X).

no
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This makes sense, since an uninstantiated variable is not anatom.
However if we instantiateX with an atom first and then askatom(X),
Prolog answers yes.

?- X = a, atom(X).

X = a

yes

But it is important that the instantiation is donebefore the test:

?- atom(X), X = a.

no

The predicatesinteger/1 and float/1 behave analogously. Try some
examples.

The predicatesnumber/1 and atomic/1 behave disjunctively. First,
number/1 tests whether a given term is either an integer or a float:
that is, it will evaluate to true whenever eitherinteger/1 or float/1

evaluate to true and it fails when both of them fail. As foratomic/1,
this tests whether a given term is a constant, that is, whether it is either
an atom or a number. Soatomic/1 will evaluate to true whenever
either atom/1 or number/1 evaluate to true and it fails when both fail.

?- atomic(mia).

yes

?- atomic(8).

yes

?- atomic(3.25).

yes

?- atomic(loves(vincent,mia)).

no

?- atomic(X)

no

What about variables? First there is thevar/1 predicate. This tests
whether the argument is anuninstantiatedvariable:

?- var(X)

yes
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?- var(mia).

no

?- var(8).

no

?- var(3.25).

no

?- var(loves(vincent,mia)).

no

Then there is thenonvar/1 predicate. This succeeds precisely when
var/1 fails; that is, it tests whether its argument isnot an uninstantiated
variable:

?- nonvar(X)

no

?- nonvar(mia).

yes

?- nonvar(8).

yes

?- nonvar(3.25).

yes

?- nonvar(loves(vincent,mia)).

yes

Note that a complex term which contains uninstantiated variables is
not itself an uninstantiated variable (it is a complex term). Therefore we
have:

?- var(loves(_,mia)).

no

?- nonvar(loves(_,mia)).

yes

And when the variableX gets instantiatedvar(X) and nonvar(X)

behave differently depending on whether they are called before or after
the instantiation:
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?- X = a, var(X).

no

?- X = a, nonvar(X).

X = a

yes

?- var(X), X = a.

X = a

yes

?- nonvar(X), X = a.

no

The Structure of Terms

Given a complex term of unknown structure (perhaps a complexterm
returned as the output of some predicate), what kind of information
might we want to extract from it? The obvious response is: itsfunctor,
its arity, and what its arguments look like. Prolog providesbuilt-in
predicates that provide this information. Information about the functor
and arity is supplied by the predicatefunctor/3. Given a complex
term, functor/3 will tell us what its functor and arity are:

?- functor(f(a,b),F,A).

A = 2

F = f

yes

?- functor([a,b,c],X,Y).

X = ’.’

Y = 2

yes

Note that when asked about a list, Prolog returns the functor., which is
the functor it uses in its internal representation of lists.

What happens when we usefunctor/3 with constants? Let’s try:

?- functor(mia,F,A).

A = 0

F = mia

yes
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?- functor(8,F,A).

A = 0

F = 8

yes

?- functor(3.25,F,A).

A = 0

F = 3.25

yes

So we can use the predicatefunctor/3 to find out the functor and
the arity of a term, and this usage also works for the special case of 0
arity terms (constants).

We can also usefunctor/3 to construct terms. How? By specifying
the second and third argument and leaving the first undetermined. The
query

?- functor(T,f,7).

for example, returns the following answer:

T = f(_G286, _G287, _G288, _G289, _G290, _G291, _G292)

yes

Note that either the first argument or the second and third argument
have to be instantiated. For example, Prolog would answer with an error
message to the queryfunctor(T,f,N). And if you think about what
the query means, Prolog is reacting in a sensible way. The query is
asking Prolog to construct a complex term without telling ithow many
arguments to provide, which is not a very sensible request.

Now that we know aboutfunctor/3, let’s put it to work. In the
previous section, we discussed the built-in predicates that tested whether
their argument was an atom, a number, a constant, or a variable. But
there was no predicate that tested whether its argument was acomplex
term. To make the list complete, let’s define such a predicate. It is easy
to do so usingfunctor/3. All we have to do is to check that there
is a suitable functor, and that the input has arguments (thatis, that its
arity is greater than zero). Here is the definition:

complexterm(X):-

nonvar(X),

functor(X,_,A),

A > 0.
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So much for functors — what about arguments? In addition to the
predicatefunctor/3, Prolog supplies us with the predicatearg/3 which
tells us about the arguments of complex terms. It takes a number N
and a complex termT and returns theNth argument ofT in its third
argument. It can be used to access the value of an argument

?- arg(2,loves(vincent,mia),X).

X = mia

yes

or to instantiate an argument

?- arg(2,loves(vincent,X),mia).

X = mia

yes

Trying to access an argument which doesn’t exist, of course,fails:

?- arg(2,happy(yolanda),X).

no

The predicatesfunctor/3 and arg/3 allow us to access all the basic
information we need to know about complex terms. However Prolog also
supplies a third built-in predicate for analysing term structure, namely
’=..’/2. This takes a complex term and returns a list that has the
functor as its head, and then all the arguments, in order, as the elements
of the tail. So to the query

?- ’=..’(loves(vincent,mia),X)

Prolog will respond

X = [loves,vincent,mia]

This predicate (which is called univ) can also be used as an infix
operator. Here are some examples showing various ways of using this
(very useful) tool:

?- cause(vincent,dead(zed)) =.. X.

X = [cause, vincent, dead(zed)]

yes

?- X =.. [a,b(c),d].

X = a(b(c), d)

yes
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?- footmassage(Y,mia) =.. X.

Y = _G303

X = [footmassage, _G303, mia]

yes

Univ really comes into its own when something has to be done toall
arguments of a complex term. Since it returns the arguments as a list,
normal list processing strategies can be used to traverse the arguments.

Strings

Strings are represented in Prolog by a list of character (ASCII) codes.
However, it would be a right kerfuffle to use list notation forsimple
string manipulation, so Prolog also offers a user-friendlynotation for
strings: double quotes. Try the following query:

?- S = "Vicky".

S = [86, 105, 99, 107, 121]

yes

Here the variableS unifies with the string"Vicky", which is a list
containing of five numbers, each of them corresponding to thecharacter
codes of the single characters the strings is composed of. (For instance,
86 is the character code for the character V, 105 is the code for the
character i, and so on.)

In other words, strings in Prolog are actually lists of numbers. Several
standard predicates are supported by most Prolog dialects to work with
strings. A particularly useful one isatom codes/2. This predicate
converts an atom into a string. The following examples illustrate what
atom codes/2 can do for you:

?- atom_codes(vicky,X).

X = [118, 105, 99, 107, 121]

yes

?- atom_codes(’Vicky’,X).

X = [86, 105, 99, 107, 121]

yes

?- atom_codes(’Vicky Pollard’,X).

X = [86, 105, 99, 107, 121, 32, 80, 111, 108|...]

yes
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It also works the other way around:atom codes/2 can also be used
to generate atoms from strings. Suppose you want to duplicate an atom
abc into the atom abcabc. This is how you could do it:

?- atom_codes(abc,X), append(X,X,L), atom_codes(N,L).

X = [97, 98, 99]

L = [97, 98, 99, 97, 98, 99]

N = abcabc

One last thing you need to know about theatom codes/2 predicate
is that it is related to another other built-in predicate, namely
number codes/2. This predicate behaves in a similar way, but, as the
names suggest, only works for numbers.

4 Operators
As we have seen, in certain cases (for example, when performing
arithmetic) Prolog lets us use operator notations that are more user-friendly
than its own internal representations. Indeed, as we shall now see,
Prolog even has a mechanism for letting us define our own operators. In
this section we’ll first take a closer look at the properties of operators,
and then learn how to define our own.

Properties of operators

Let’s start with an example from arithmetic. Internally, Prolog uses the
expressionis(11,+(2,*(3,3))), but we are free to write the functors*
and + between their arguments, to form the more user-friendly expression
11 is 2 + 3 * 3. Functors that can be written between their arguments
are called infix operators. Other examples of infix operatorsin Prolog
are :-, -->, ;, ’,’, =, =.., == and so on. In addition to infix
operators there are also prefix operators (which are writtenbefore their
arguments) and postfix operators (which are written after).For example,
?- is a prefix operator, and so is the one-place- which is used to
represent negative numbers (as in1 is 3 + -2). An example of a
postfix operator is the++ notation used in the C programming language
to increment the value of a variable.

When we learned about arithmetic in Prolog, we saw that Prolog
knows about the conventions for disambiguating arithmeticexpressions.
So when we write2 + 3 * 3, Prolog knows that we mean2 + (3 * 3)

and not (2 + 3) * 3. But how does Prolog know this? Because
every operator has a certain precedence. The precedence of+ is
greater than the precedence of*, and that’s why+ is taken to be the
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main functor of the expression2 + 3 * 3. (Note that Prolog’s internal
representation+(2,*(3,3)) is not ambiguous.) Similarly, the precedence
of is is higher than the precedence of+, so 11 is 2 + 3 * 3

is interpreted asis(11,+(2,*(3,3))) and not as the (nonsensical)
expression+(is(11,2),*(3,3)). In Prolog, precedence is expressed by
a number between 0 and 1200; the higher the number, the greater the
precedence. To give some examples, the precedence of= is 700, the
precedence of+ is 500, and the precedence of* is 400.

What happens when there are several operators with the same
precedence in one expression? We said above that Prolog finds
the query 2 =:= 3 == =:=(2,3) confusing. It doesn’t know how
to bracket the expression: Is it=:=(2,==(3,=:=(2,3))) or is it
==(=:=(2,3),=:=(2,3))? The reason Prolog is not able to decide on
the correct bracketing is because== and =:= have the same precedence.
In such cases, explicit bracketings must be supplied by the programmer.

What about the following query though?

?- X is 2 + 3 + 4.

Does Prolog find this confusing? Not at all: it deals with it happily
and correctly answersX = 9. But which bracketing did Prolog choose:
is(X,+(2,+(3,4))) or is(X,+(+(2,3),4))? As the following queries
show, it chose the second:

?- 2 + 3 + 4 = +(2,+(3,4)).

no

?- 2 + 3 + 4 = +(+(2,3),4).

yes

Here Prolog has used information about the associativity of+ to
disambiguate:+ is left associative, which means that the expression to
the right of + must have a lower precedence than+ itself, whereas
the expression on the left may have the same precedence as+. The
precedence of an expression is simply the precedence of its main
operator, or 0 if it is enclosed in brackets. The main operator of 3 + 4

is +, so that interpreting2 + 3 + 4 as +(2,+(3,4)) would mean that
the expression to the right of the first+ has the same precedence as+

itself, which is illegal. It has to be lower.
The operators==, =:=, and is are defined to be non-associative,

which means that both of their arguments must have a lower precedence.
Therefore 2 =:= 3 == =:=(2,3) is an illegal expression, since no
matter how you bracket it you’ll get a conflict:2 =:= 3 has the same
precedence as==, and 3 == =:=(2,3) has the same precedence as=:=.
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The type of an operator (infix, prefix, or postfix), its precedence, and
its associativity are the three things that Prolog needs to know to be able
to translate user-friendly (but potentially ambiguous) operator notations
into Prolog’s internal representation.

Defining operators

In addition to providing a user-friendly operator notationfor certain
functors, Prolog also lets you define your own operators. So you could,
for example, define a postfix operatoris_dead; then Prolog would
allow you to write zed is_dead as a fact in your database instead of
is_dead(zed).

Operator definitions in Prolog look like this:

:- op(Precedence,Type,Name).

As we mentioned above, precedence is a number between 0 and 1200,
and the higher the number, the greater the precedence. Type is an atom
specifying the type and associativity of the operator. In the case of+
this atom isyfx, which says that+ is an infix operator; thef represents
the operator, and thex and y the arguments. Furthermore,x stands for
an argument which has a precedence which is lower than the precedence
of + and y stands for an argument which has a precedence which lower
or equal to the precedence of+. There are the following possibilities
for type:

infix xfx, xfy, yfx

prefix fx, fy

suffix xf, yf

So your operator definition foris_dead might be as follows:

:- op(500, xf, is_dead).

Here are the definitions for some of the built-in operators. You can
see that operators with the same properties can be specified in one
statement by giving a list of their names (instead of a singlename) as
the third argument ofop.
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:- op( 1200, xfx, [ :-, --> ]).

:- op( 1200, fx, [ :-, ?- ]).

:- op( 1100, xfy, [ ; ]).

:- op( 1000, xfy, [ ’,’ ]).

:- op( 700, xfx, [ =, is, =.., ==, \==,

=:=, =\=, <, >, =<, >= ]).

:- op( 500, yfx, [ +, -]).

:- op( 500, fx, [ +, - ]).

:- op( 300, xfx, [ mod ]).

:- op( 200, xfy, [ ^ ]).

One final point should made explicit. Operator definitions don’t specify
the meaningsof operators, they only describe how they can be used
syntactically. That is, an operator definition doesn’t say anything about
when a query involving this operator will evaluate to true, it merely
extends thesyntax of Prolog. So if the operatoris_dead is defined as
above, and you pose the queryzed is_dead, Prolog won’t complain
about illegal syntax (as it would without this definition) but will try to
prove the goalis_dead(zed), which is Prolog’s internal representation
of zed is_dead. And this is all operator definitions do — they just tell
Prolog how to translate a user-friendly notation into real Prolog notation.
So, what would be Prolog’s answer to the queryzed is_dead? It
would be no, because Prolog would try to proveis_dead(zed), but
would not find any matching clause in the database. But suppose we
extended the database as follows:

:- op(500, xf, is_dead).

kill(marsellus,zed).

is_dead(X) :- kill(_,X).

Now Prolog would answeryes to the query.

5 Exercises

Exercise 9.1. Which of the following queries succeed, and which fail? E

?- 12 is 2*6.

?- 14 =\= 2*6.

?- 14 = 2*7.
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?- 14 == 2*7.

?- 14 \== 2*7.

?- 14 =:= 2*7.

?- [1,2,3|[d,e]] == [1,2,3,d,e].

?- 2+3 == 3+2.

?- 2+3 =:= 3+2.

?- 7-2 =\= 9-2.

?- p == ’p’.

?- p =\= ’p’.

?- vincent == VAR.

?- vincent=VAR, VAR==vincent.

Exercise 9.2. How does Prolog respond to the following queries?E

?- .(a,.(b,.(c,[]))) = [a,b,c].

?- .(a,.(b,.(c,[]))) = [a,b|[c]].

?- .(.(a,[]),.(.(b,[]),.(.(c,[]),[]))) = X.

?- .(a,.(b,.(.(c,[]),[]))) = [a,b|[c]].

Exercise 9.3. Write a two-place predicatetermtype(Term,Type) thatE
takes a term and gives back the type(s) of that term (atom, number,
constant, variable, and so on). The types should be given back in the
order of their generality. The predicate should behave in the following
way.

?- termtype(Vincent,variable).

yes

?- termtype(mia,X).
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X = atom ;

X = constant ;

X = simple_term ;

X = term ;

no

?- termtype(dead(zed),X).

X = complex_term ;

X = term ;

no

Exercise 9.4. Write a Prolog program that defines the predicate E
groundterm(Term) which tests whether or notTerm is a ground term.
Ground terms are terms that don’t contain variables. Here are examples
of how the predicate should behave:

?- groundterm(X).

no

?- groundterm(french(bic_mac,le_bic_mac)).

yes

?- groundterm(french(whopper,X)).

no

Exercise 9.5. Assume that we have the following operator definitions. E

:- op(300, xfx, [are, is_a]).

:- op(300, fx, likes).

:- op(200, xfy, and).

:- op(100, fy, famous).

Which of the following are well-formed terms? What are the main
operators? Give the bracketings.

X is_a witch

harry and ron and hermione are friends

harry is_a wizard and likes quidditch

dumbledore is_a famous wizard

6 Practical Session
To start this session, we’ll introduce some built-in predicates for printing
terms onto the screen. You should try out the following examples as we
introduce them. The first predicate we want to look at isdisplay/1.
Here are some simple examples:



180 Learn Prolog Now!

?- display(loves(vincent,mia)).

loves(vincent, mia)

yes

?- display(’jules eats a big kahuna burger’).

jules eats a big kahuna burger

yes

But the really important point aboutdisplay/1, as the following
examples demonstrate, is that it prints Prolog’sinternal representationof
terms to the screen:

?- display(2+3+4).

+(+(2, 3), 4)

yes

This property ofdisplay/1 makes it a very useful tool for learning
how operators work in Prolog. So, before going on, try the following
queries. Make sure you understand why Prolog answers the wayit does.

?- display([a,b,c]).

?- display(3 is 4 + 5 / 3).

?- display(3 is (4 + 5) / 3).

?- display((a:-b,c,d)).

?- display(a:-b,c,d).

So display/1 is useful when we want to look at the internal
representation of terms in operator notation. But often we would prefer to
see the user-friendly notation instead. For example, when reading lists it
is usually more pleasant to see[a,b,c] rather than.(a.(b.(c,[]))).
The built-in predicatewrite/1 lets us view terms like this. This
predicate takes a term and prints it to the screen in the user-friendly
notation.

?- write(2+3+4).

2+3+4

yes

?- write(+(2,3)).

2+3

yes
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?- write([a,b,c]).

[a, b, c]

yes

?- write(.(a,.(b,[]))).

[a, b]

yes

And here is what happens when the term to be written contains
variables:

?- write(X).

_G204

X = _G204

yes

?- X = a, write(X).

a

X = a

yes

The following example shows what happens when you give two
write/1 commands one after the other:

?- write(a),write(b).

ab

yes

That is, Prolog just executes one after the other without putting any
space in between the output of the two commands. Of course, you can
get Prolog to print space by telling it to write the term’ ’:

?- write(a),write(’ ’),write(b).

a b

yes

And if you want more than one space, for example five blanks, you can
tell Prolog to write ’ ’.

?- write(a),write(’ ’),write(b).

a b

yes
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Another way of printing spaces is by using the predicatetab/1. This
takes a number as argument and then prints that number of spaces:

?- write(a),tab(5),write(b).

a b

yes

Another predicate useful for formatting isnl. This tells Prolog to
make a line-break and to go on printing on the next line.

?- write(a),nl,write(b).

a

b

yes

Time to apply what you have just learned. In the last chapter we saw
how extra arguments in DCGs could be used to build parse trees. For
example, to the query

s(T,[a,man,shoots,a,woman],[])

Prolog would answer

s(np(det(a),n(man)),vp(v(shoots),np(det(a),n(woman)))).

This term is a representation of the parse tree, but it is not avery
readable representation. It would be nicer if Prolog printed something
like the following (this style of printing is usually calledpretty printing):

s(

np(

det(a)

n(man))

vp(

v(shoots)

np(

det(a)

n(woman))))

Write a predicatepptree/1 that takes a complex term representing a
tree as its argument and prints the tree in a more readable form.

Time to practice writing operator definitions. In the practical
session of Chapter 7, you were asked to write a DCG generating
propositional logic formulas. The input you had to use was a
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bit awkward though. The formula¬(p → q) had to be represented
as [not, ’(’, p, implies, q, ’)’]. Now that you know about
operators, you can do things rather more neatly. Write operator definitions
for not, and, or, and implies, so that Prolog accepts (and correctly
brackets) propositional logic formulas. Usedisplay/1 to check your
code. It should yield the following kinds of response:

?- display(not(p implies q)).

not(implies(p,q)).

yes

?- display(not p implies q).

implies(not(p),q)

yes





Chapter 10

Cuts and Negation

This chapter has two main goals:

1. To explain how to control Prolog’s back-
tracking behaviour with the help of the cut
predicate.

2. To explain how cut can be packaged into
a more structured form, namely negation as
failure.
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1 The Cut
Automatic backtracking is one of the most characteristic features of
Prolog. But backtracking can lead to inefficiency. Sometimes Prolog
can waste time exploring possibilities that lead nowhere. It would be
pleasant to have some control over this aspect of its behaviour, but so
far we have only seen two (rather crude) ways of doing this: changing
rule order, and changing goal order. But there is another way. There is
a built-in Prolog predicate! (the exclamation mark), called cut, which
offers a more direct way of exercising control over the way Prolog looks
for solutions.

What exactly is cut, and what does it do? It’s simply a specialatom
that we can use when writing clauses. For example,

p(X):- b(X), c(X), !, d(X), e(X).

is a perfectly good Prolog rule. As for what cut does, first of all, it
is a goal thatalways succeeds. Second, and more importantly, it has a
side effect. Suppose that some goal makes use of this clause (we call
this goal the parent goal). Then the cut commits Prolog to anychoices
that were made since the parent goal was unified with the left hand side
of the rule (including, importantly, the choice of using that particular
clause). Let’s look at an example to see what this means.

First consider the following piece of cut-free code:

p(X):- a(X).

p(X):- b(X), c(X), d(X), e(X).

p(X):- f(X).

a(1). b(1). c(1). d(2). e(2). f(3).

b(2). c(2).

If we pose the queryp(X) we will get the following responses:

X = 1 ;

X = 2 ;

X = 3 ;

no

Here is the search tree that explains how Prolog finds these three
solutions. Note that it has to backtrack once, namely when itenters the
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second clause forp/1 and decides to unify the first goal withb(1)
instead ofb(2).

?- p(X)

?- a( G1)

X = G1

G1 = 1

?- b( G2),c( G2),d( G2),e( G2)

X = G2

?- c(1),d(1),e(1)

G2 = 1

?- d(1),e(1)

†

?- c(2),d(2),e(2)

G2 = 2

?- d(2),e(2)

?- e(2)

?- f( G3)

X = G3

G3 = 3

But now suppose we insert a cut in the second clause:

p(X):- b(X), c(X), !, d(X), e(X).

If we now pose the queryp(X) we will get the following responses:

X = 1 ;

no

What’s going on here? Let’s consider.

1. p(X) is first unified with the first rule, so we get a new goal
a(X). By instantiatingX to 1, Prolog unifiesa(X) with the fact
a(1) and we have found a solution. So far, this is exactly what
happened in the first version of the program.

2. We then go on and look for a second solution.p(X) is unified with
the second rule, so we get the new goalsb(X),c(X),!,d(X),e(X).
By instantiating X to 1, Prolog unifiesb(X) with the fact b(1),
so we now have the goalsc(1),!,d(1),e(1). But c(1) is in
the database so this simplifies to!,d(1),e(1).

3. Now for the big change. The! goal succeeds (as it always does)
and commits us to the choices made so far. In particular, we are
committed to havingX = 1, and we are also committed to using
the second rule.
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4. But d(1) fails. And there’s no way we can re-satisfy the goal
p(X). Sure, if we were allowed to try the valueX=2 we could use
the second rule to generate a solution (that’s what happenedin the
original version of the program). But wecan’t do this: the cut
has removed this possibility from the search tree. And sure,if we
were allowed to try the third rule, we could generate the solution
X=3. But we can’t do this: once again, the cut has removed this
possibility from the search tree.

If you look at the search tree, you’ll see that this all boils down to
the following: search stops when the goald(1) doesn’t lead to any
node where an alternative choice is available. The crosses in the search
tree indicate the branches that the cut trimmed away.

?- p(X)

?- a( G1)

X = G1

G1 = 1

?- b( G2),c( G2),!,d( G2),e( G2)

X = G2

?- c(1),!,d(1),e(1)

G2 = 1

?- !, d(1),e(1)

?- d(1),e(1)

†

. . .

×
. . .

×

One point is worth emphasising: the cut only commits us to choices
made since the parent goal was unified with the left hand side of the
clause containing the cut. For example, in a rule of the form

q:- p1,...,pn, !, r1,...,rm

when we reach the cut it commits us to using this particular clause for
q and it commits us to the choices made when evaluatingp1,...,pn.
However, we are free to backtrack among ther1,...,rm and we are
also free to backtrack among alternatives for choices that were made
before reaching the goalq. A concrete example will make this clear.
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First consider the following cut-free program:

s(X,Y):- q(X,Y).

s(0,0).

q(X,Y):- i(X), j(Y).

i(1).

i(2).

j(1).

j(2).

j(3).

Here’s how it behaves:

?- s(X,Y).

X = 1

Y = 1 ;

X = 1

Y = 2 ;

X = 1

Y = 3 ;

X = 2

Y = 1 ;

X = 2

Y = 2 ;

X = 2

Y = 3 ;

X = 0

Y = 0;

no

And this is the corresponding search tree:
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?- s(X,Y)

?- q( G4, G5)

X = G4, Y = G5

?- i( G4),j( G5)

?- j( G5)

G4 = 1

G5 = 1 G5 = 2 G5 = 3

?- j( G5)

G4 = 2

G5 = 1 G5 = 2 G5 = 3

X = 0, Y = 0

Suppose we add a cut to the clause definingq/2:

q(X,Y):- i(X), !, j(Y).

Now the program behaves as follows:

?- s(X,Y).

X = 1

Y = 1 ;

X = 1

Y = 2 ;

X = 1

Y = 3 ;

X = 0

Y = 0;

no

Let’s see why.

1. s(X,Y) is first unified with the first rule, which gives us a new
goal q(X,Y).
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2. q(X,Y) is then unified with the third rule, so we get the new
goals i(X),!,j(Y). By instantiatingX to 1, Prolog unifiesi(X)
with the fact i(1). This leaves us with the goal!,j(Y). The cut,
of course, succeeds, and commits us to the choices made so far.

3. But what are these choices? These: thatX = 1, and that we are
using this clause. But note: we havenot yet chosen a value forY.

4. Prolog then goes on, and by instantiatingY to 1, Prolog unifies
j(Y) with the fact j(1). So we have found a solution.

5. But we can find more. Prologis free to try another value forY.
So it backtracks and setsY to 2, thus finding a second solution.
And in fact it can find another solution: on backtracking again, it
sets Y to 3, thus finding a third solution.

6. But those are all alternatives forj(X). Backtracking to the left of
the cut is not allowed, so itcan’t resetX to 2, so it won’t find the
next three solutions that the cut-free program found. Backtracking
over goals that were reached beforeq(X,Y) is allowed however,
so that Prolog will find the second clause fors/2.

Here’s the corresponding search tree:

?- s(X,Y)

?- q( G4, G5)

X = G4, Y = G5

?- i( G4),!,j( G5)

?- !,j( G5)

G4 = 1

?- j( G5)

G5 = 1 G5 = 2 G5 = 3

. . .

×

X = 0, Y = 0
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2 Using Cut
Well, we now know what cut is. But how do we use it in practice,
and why is it so useful? As a first example, let’s define a (cut-free)
predicatemax/3 which takes integers as arguments and succeeds if the
third argument is the maximum of the first two. For example, the queries

?- max(2,3,3).

and

?- max(3,2,3).

and

?- max(3,3,3).

should succeed, and the queries

?- max(2,3,2).

and

?- max(2,3,5).

should fail. And of course, we also want the program to work when
the third argument is a variable. That is, we want the programto be
able to find the maximum of the first two arguments for us:

?- max(2,3,Max).

Max = 3

yes

?- max(2,1,Max).

Max = 2

yes

Now, it is easy to write a program that does this. Here’s a first
attempt:

max(X,Y,Y):- X =< Y.

max(X,Y,X):- X>Y.

This is a perfectly correct program, and we might be tempted simply to
stop here. But we shouldn’t: it’s not good enough.
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What’s the problem? There is a potential inefficiency. Suppose this
definition is used as part of a larger program, and somewhere along
the way max(3,4,Y) is called. The program will correctly setY=4.
But now consider what happens if at some stage backtracking is forced.
The program will try to re-satisfymax(3,4,Y) using the second clause.
This is completely pointless: the maximum of3 and 4 is 4 and that’s
that. There is no second solution to find. To put it another way: the
two clauses in the above program are mutually exclusive: if the first
succeeds, the second must fail and vice versa. So attemptingto re-satisfy
this clause is a complete waste of time.

With the help of cut, this is easy to fix. We need to insist that
Prolog should never try both clauses, and the following codedoes this:

max(X,Y,Y) :- X =< Y,!.

max(X,Y,X) :- X>Y.

Note how this works. Prolog will reach the cut ifmax(X,Y,Y) is
called andX =< Y succeeds. In this case, the second argument is the
maximum, and that’s that, and the cut commits us to this choice. On
the other hand, ifX =< Y fails, then Prolog goes onto the second clause
instead.

Note that this cut doesnot change the meaning of the program. Our
new code gives exactly the same answers as the old one, but it’s more
efficient. In fact, the program isexactly the same as the previous
version, except for the cut, and this is a pretty good sign that the cut
is a sensible one. Cuts like this, which don’t change the meaning of a
program, have a special name: they’re called green cuts.

But some readers will dislike this code. After all, isn’t thesecond
line redundant? If we have to use this line, we already know that the
first argument is bigger that the second. Couldn’t we squeezeout a
little more efficiency with the help of our new cut construct?Let’s try.
Here’s a first (faulty) attempt:

max(X,Y,Y) :- X =< Y,!.

max(X,Y,X).

Note that is the same as our earlier green cutmax/3, except that we
have got rid of the> test in the second clause. How good is it? Well,
for some queries it’s fine. In particular, it answers correctly when we
pose queries in which the third argument is a variable. For example:

?- max(100,101,X).
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X = 101

yes

and

?- max(3,2,X).

X = 3

yes

Nonetheless, it’snot the same as the green cut program: the new
max/3 does not work correctly. Consider what happens when all three
arguments are instantiated. For example, consider the query

?- max(2,3,2).

Obviously this query should fail. But in our new version, it will succeed!
Why? Well, this query simply won’t unify with the head of the first
clause, so Prolog goes straight to the second clause. And thequery
will unify with the second clause, and (trivially) the querysucceeds! So
maybe getting rid of that> test wasn’t quite so smart after all.

But there is another way. The problem with the new code is simply
that we carried out variable unificationbefore we traversed the cut.
Suppose we handle our variables a little more intelligently(using three
variables instead of two) and explicitly unifyafter we have crossed the
cut:

max(X,Y,Z) :- X =< Y,!, Y = Z.

max(X,Y,X).

As the reader should check, this program does work, and (as wehoped
for) it avoids the explicit comparison made in the second clause of our
green cut version ofmax/3.

But there is an important difference between the new versionof the
program and the green cut version. The cut in the new program is a
classic example of what is known as a red cut. As this terminology is
supposed to suggest, such cuts are potentially dangerous. Why? Because
if we take out such a cut, wedon’t get an equivalent program. That is,
if we remove the cut, the resulting code doesnot compute the maximum
of two numbers any more. To put it another way, the presence ofthe
cut is indispensableto the correct functioning of the program. (This was
not the case in the green cut version — the cut there merely improved
efficiency.) Because red cuts are indispensable cuts, theirpresence means
that programs containing them are not fully declarative. Now, red cuts
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can be useful on occasions, but beware! Their use can lead to subtle
programming mistakes and make code hard to debug.

So, what to do? It’s probably best to work as follows. Try and get a
good, clear, cut-free program working, and only then try to improve its
efficiency by using cuts. Use green cuts whenever possible. Red cuts
should be used only when absolutely necessary, and it’s a good idea to
explicitly comment on any red cuts in your code. Working thisway will
maximise your chances of striking a good balance between declarative
clarity and procedural efficiency.

3 Negation as Failure
One of Prolog’s most useful features is the simple way it letsus state
generalisations. To say that Vincent enjoys burgers we justwrite:

enjoys(vincent,X) :- burger(X).

But in real life rules have exceptions. Perhaps Vincent doesn’t like
Big Kahuna burgers. That is, perhaps the correct rule is really: Vincent
enjoys burgers,exceptBig Kahuna burgers. Fine. But how do we state
this in Prolog?

As a first step, let’s introduce another built-in predicate:fail/0. As
its name suggests,fail/0 is a special symbol that will immediately fail
when Prolog encounters it as a goal. That may not sound too useful,
but remember:when Prolog fails, it tries to backtrack. Thus fail/0

can be viewed as an instruction to force backtracking. And when used
in combination with cut, whichblocks backtracking,fail/0 enables us
to write some interesting programs, and in particular, it lets us define
exceptions to general rules.

Consider the following code:

enjoys(vincent,X) :- big_kahuna_burger(X),!,fail.

enjoys(vincent,X) :- burger(X).

burger(X) :- big_mac(X).

burger(X) :- big_kahuna_burger(X).

burger(X) :- whopper(X).

big_mac(a).

big_kahuna_burger(b).

big_mac(c).

whopper(d).
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The first two lines describe Vincent’s preferences. The lastsix lines
describe a world containing four burgers,a, b, c, and d. We’re also
given information about what kinds of burgers they are. Given that
the first two lines really do describe Vincent’s preferences(that is, that
he likes all burgers except Big Kahuna burgers) then he should enjoy
burgersa, c and d, but not b. And indeed, this is what happens:

?- enjoys(vincent,a).

yes

?- enjoys(vincent,b).

no

?- enjoys(vincent,c).

yes

?- enjoys(vincent,d).

yes

How does this work? The key is the combination of! and fail/0 in
the first line (this even has a name: it’s called the cut-fail combination).
When we pose the queryenjoys(vincent,b), the first rule applies,
and we reach the cut. This commits us to the choices we have made,
and in particular, blocks access to the second rule. But thenwe hit
fail/0. This tries to force backtracking, but the cut blocks it, andso
our query fails.

This is interesting, but it’s not ideal. For a start, note that the ordering
of the rules is crucial: if we reverse the first two lines, wedon’t get
the behaviour we want. Similarly, the cut is crucial: if we remove it,
the program doesn’t behave in the same way (so this is ared cut). In
short, we’ve got two mutually dependent clauses that make intrinsic use
of the procedural aspects of Prolog. Something useful is clearly going
on here, but it would be better if we could extract the useful part and
package it in a more robust way.

And we can. The crucial observation is that the first clause is
essentially a way of saying that Vincent doesnot enjoy X if X is a Big
Kahuna burger. That is, the cut-fail combination seems to beoffering us
some form of negation. And indeed, this is the crucial generalisation:
the cut-fail combination lets us define a form of negation called negation
as failure. Here’s how:

neg(Goal) :- Goal,!,fail.

neg(Goal).
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For any Prolog goal,neg(Goal) will succeed precisely ifGoal doesnot
succeed.

Using our newneg/1 predicate, we can describe Vincent’s preferences
in a much clearer way:

enjoys(vincent,X) :- burger(X),

neg(big_kahuna_burger(X)).

That is, Vincent enjoys X if X is a burger and X is not a Big Kahuna
burger. This is quite close to our original statement: Vincent enjoys
burgers, except Big Kahuna burgers.

Negation as failure is an important tool. Not only does it offer useful
expressivity (notably, the ability to describe exceptions) it also offers it
in a relatively safe form. By working with negation as failure (instead
of with the lower level cut-fail combination) we have a better chance
of avoiding the programming errors that often accompany theuse of red
cuts. In fact, negation as failure is so useful that it comes built-in as
part of standard Prolog, so we don’t have to define it at all. Instandard
Prolog the operator\+ means negation as failure, so we could define
Vincent’s preferences as follows:

enjoys(vincent,X) :- burger(X),

\+ big_kahuna_burger(X).

Nonetheless, a couple of words of warning are in order:don’t make
the mistake of thinking that negation as failure works just like logical
negation. It doesn’t. Consider again our burger world:

burger(X) :- big_mac(X).

burger(X) :- big_kahuna_burger(X).

burger(X) :- whopper(X).

big_mac(a).

big_kahuna_burger(b).

big_mac(c).

whopper(d).

If we pose the queryenjoys(vincent,X) we get the correct sequence
of responses:

X = a ;

X = c ;

X = d ;

no
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But now suppose we rewrite the first line as follows:

enjoys(vincent,X) :- \+ big_kahuna_burger(X), burger(X).

Note that from a declarative point of view, this should make no
difference: after all,burger(x) and not big kahuna burger(x)is logically
equivalent tonot big kahuna burger(x) and burger(x). That is, no matter
what the variablex denotes, it is impossible for one of these expressions
to be true and the other false. Nonetheless, here’s what happens when
we pose the same query:

?- enjoys(vincent,X).

no

What’s going on? Well, in the modified database, the first thing
that Prolog has to check is whether\+ big_kahuna_burger(X) holds,
which means that it must check whetherbig_kahuna_burger(X) fails.
But this succeeds. After all, the database contains the information
big_kahuna_burger(b). So the query \+ big_kahuna_burger(X)

fails, and hence the original query does too. In a nutshell, the crucial
difference between the two programs is that in the original version (the
one that works right) we use\+ only after we have instantiated the
variable X. In the new version (which goes wrong) we use\+ before
we have done this. The difference is crucial.

Summing up, we have seen that negation as failure is not logical
negation, and that it has a procedural dimension that must beunderstood.
Nonetheless, it is an important programming construct: it is generally a
better idea to try use negation as failure than to write code containing
heavy use of red cuts. Nonetheless, “generally” does not mean “always”.
There are times when it is better to use red cuts.

For example, suppose that we need to write code to capture the
following condition: p holds if a and b hold, or if a does not hold and
c holds too. This can be captured with the help of negation as failure
very directly:

p :- a,b.

p :- \+ a, c.

But suppose thata is a very complicated goal, a goal that takes a
lot of time to compute. Programming it this way means we may have
to computea twice, and this may mean that we have unacceptably slow
performance. If so, it would be better to use the following program:
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p :- a,!,b.

p :- c.

Note that this is a red cut: removing it changes the meaning ofthe
program.

When all’s said and done, there are no universal guidelines that will
cover all the situations you are likely to run across. Programming is as
much an art as a science: that’s what makes it so interesting.You need
to know as much as possible about the language you are workingwith
(whether it’s Prolog, Java, Perl, or whatever), understandthe problem
you are trying to solve, and know what counts as an acceptablesolution.
And then: go ahead and try your best!

4 Exercises

Exercise 10.1. Suppose we have the following database: E

p(1).

p(2) :- !.

p(3).

Write all of Prolog’s answers to the following queries:

?- p(X).

?- p(X),p(Y).

?- p(X),!,p(Y).

Exercise 10.2. First, explain what the following program does: E

class(Number,positive) :- Number > 0.

class(0,zero).

class(Number,negative) :- Number < 0.

Second, improve it by adding green cuts.

Exercise 10.3. Without using cut, write a predicatesplit/3 that splits E
a list of integers into two lists: one containing the positive ones (and
zero), the other containing the negative ones. For example:

split([3,4,-5,-1,0,4,-9],P,N)

should return:
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P = [3,4,0,4]

N = [-5,-1,-9].

Then improve this program, without changing its meaning, with the help
of the cut.

Exercise 10.4.E
Recall that in Exercise 3.3 we gave you the following knowledge

base:

directTrain(saarbruecken,dudweiler).

directTrain(forbach,saarbruecken).

directTrain(freyming,forbach).

directTrain(stAvold,freyming).

directTrain(fahlquemont,stAvold).

directTrain(metz,fahlquemont).

directTrain(nancy,metz).

We asked you to write a recursive predicatetravelFromTo/2 that told
us when we could travel by train between two towns.

Now, it’s plausible to assume that whenever it is possible totake a
direct train from A to B, it is also possible to take a direct train from
B to A. Add this information to the database. Then write a predicate
route/3 which gives you a list of towns that are visited by taking the
train from one town to another. For instance:

?- route(forbach,metz,Route).

Route = [forbach,freyming,stAvold,fahlquemont,metz]

Exercise 10.5. Recall the definition of jealousy given in Chapter 1.E

jealous(X,Y):- loves(X,Z), loves(Y,Z).

In a world where both Vincent and Marsellus love Mia, Vincentwill be
jealous of Marsellus, and Marsellus of Vincent. But Marsellus will also
be jealous of himself, and so will Vincent. Revise the Prologdefinition
of jealousy in such a way that people can’t be jealous of themselves.

5 Practical Session
The purpose of this session is to help you get familiar with cuts and
negation as failure. First some keyboard exercises:
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1. Try out all three versions of themax/3 predicate defined in the
text: the cut-free version, the green cut version, and the red cut
version. As usual, “try out” means “run traces on”, and you should
make sure that you trace queries in which all three argumentsare
instantiated to integers, and queries where the third argument is
given as a variable.

2. Ok, time for a burger. Try out all the methods discussed in the
text for coping with Vincent’s preferences. That is, try outthe
program that uses a cut-fail combination, the program that uses
negation as failure correctly, and also the program that mucks it
up by using negation in the wrong place.

Now for some programming:

1. Define a predicatenu/2 (”not unifiable”) which takes two terms
as arguments and succeeds if the two terms do not unify. For
example:

nu(foo,foo).

no

nu (foo,blob).

yes

nu(foo,X).

no

You should define this predicate in three different ways:

(a) First (and easiest) write it with the help of= and \+.

(b) Second write it with the help of=, but don’t use\+.

(c) Third, write it using a cut-fail combination. Don’t use= and
don’t use \+.

2. Define a predicateunifiable(List1,Term,List2) where List2

is the list of all members ofList1 that unify with Term. The
elements ofList2 should not be instantiated by the unification.
For example

unifiable([X,b,t(Y)],t(a),List]

should yield
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List = [X,t(Y)].

Note that X and Y are still not instantiated. So the tricky part is:
how do we check that they unify witht(a) without instantiating
them?

(Hint: consider using tests of the form\+ term1 = term2. Why?
Think about it. You might also like to think about tests of the
form \+ \+ term1 = term2.)



Chapter 11

Database Manipulation and
Collecting Solutions

This chapter has two main goals:

1. To discuss database manipulation in Prolog.

2. To discuss built-in predicates that let us
collect all solutions to a problem into a single
list.
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1 Database Manipulation
Prolog has four database manipulation commands: assert, retract, asserta,
and assertz. Let’s see how these are used. Suppose we start with an
empty database. So if we give the command:

?- listing.

then Prolog will simply respond yes; the listing (of course)is empty.
Suppose we now give this command:

?- assert(happy(mia)).

This succeeds (assert/1 commandsalways succeed). But what is
important is not that it succeeds, but the side-effect it hason the
database. For if we now give the command

?- listing.

we get:

happy(mia).

That is, the database is no longer empty: it now contains the fact we
asserted.

Suppose we then made four more assert commands:

?- assert(happy(vincent)).

yes

?- assert(happy(marcellus)).

yes

?- assert(happy(butch)).

yes

?- assert(happy(vincent)).

yes

and then ask for a listing:

?- listing.

happy(mia).

happy(vincent).

happy(marcellus).

happy(butch).

happy(vincent).

yes
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All the facts we asserted are now in the knowledge base. Note that
happy(vincent) is in the knowledge base twice. As we asserted it
twice, this seems sensible.

The database manipulations we have been making have changedthe
meaning of the predicatehappy/1. More generally, database manipulation
commands give us the ability to change the meaning of predicates while
we are running programs. Predicates whose definitions change during
run-time are called dynamic predicates, as opposed to the static predicates
that we have previously dealt with. Most Prolog interpreters insist that
we explicitly declare the predicates that we wish to be dynamic. We
will soon examine an example involving dynamic predicates,but let’s
first complete our discussion of the database manipulation commands.

So far we have only asserted facts into the database, but we can also
assert new rules. Suppose we want to assert the rule that everyone who
is happy is naive. That is, suppose we want to assert that:

naive(X):- happy(X).

We can do this as follows:

assert( (naive(X):- happy(X)) ).

Note the syntax of this command:the rule we are asserting is enclosed
in a pair of brackets. If we now ask for a listing we get:

happy(mia).

happy(vincent).

happy(marcellus).

happy(butch).

happy(vincent).

naive(A):-

happy(A).

Now that we know how to assert new information into the database,
we should also learn how to remove information when we no longer
need it. There is an inverse predicate toassert/1, namely retract/1.
For example, if we carry straight on from the previous example by
giving the command:

?- retract(happy(marcellus)).

and then list the database, we get:
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happy(mia).

happy(vincent).

happy(butch).

happy(vincent).

naive(A) :-

happy(A).

That is, the facthappy(marcellus) has been removed.
Suppose we go on further, and say

?- retract(happy(vincent)).

and then ask for a listing. We get:

happy(mia).

happy(butch).

happy(vincent).

naive(A) :-

happy(A).

Note that the first occurrence ofhappy(vincent), and only the first
occurrence, was removed.

To remove all of our assertions contributing to the definition of the
predicatehappy/1 we can use a variable:

?- retract(happy(X)).

X = mia ;

X = butch ;

X = vincent ;

no

A listing reveals that the database is now empty, except for the rule
naive(A) :- happy(A).

?- listing.

naive(A) :-

happy(A).
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If we want more control over where the asserted material is placed,
there are two variants ofassert/1, namely:

1. assertz. Places asserted material at theend of the database.

2. asserta. Places asserted material at thebeginningof the database.

For example, suppose we start with an empty database, and then we
give the following command:

assert( p(b) ), assertz( p(c) ), asserta( p(a) ).

Then a listing reveals that we now have the following database:

?- listing.

p(a).

p(b).

p(c).

yes

Database manipulation is a useful technique. It is especially useful for
storing the results to computations, so that if we need to askthe same
question in the future, we don’t need to redo the work: we justlook up
the asserted fact. This technique is called memoisation, orcaching, and
in some applications it can greatly increase efficiency. Here’s a simple
example of this technique at work:

:- dynamic lookup/3.

add_and_square(X,Y,Res):-

lookup(X,Y,Res), !.

add_and_square(X,Y,Res):-

Res is (X+Y)*(X+Y),

assert(lookup(X,Y,Res)).

What does this program do? Basically, it takes two numbers X and
Y, adds X to Y, and then squares the result. For example we have:

?- add_and_square(3,7,X).

X = 100

yes
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But the important point is:how does it do this? First, note that we
have declaredlookup/3 as a dynamic predicate. We need to do this as
we plan to change the definition oflookup/3 during run-time. Second,
note that there are two clauses definingadd_and_square/3. The second
clause performs the required arithmetic calculation and asserts the result
to the Prolog database using the predicatelookup/3 (that is, it caches
the result). The first clause checks the Prolog database to see if the
calculation has already been made in the past. If it has been,the
program simply returns the result, and the cut prevents it from entering
the second clause.

Here’s an example of the program at work. Suppose we give Prolog
another query

?- add_and_square(3,4,Y).

Y = 49

yes

If we now ask for a listing we see that the database now contains

lookup(3, 7, 100).

lookup(3, 4, 49).

Should we later ask Prolog to add and square 3 and 4, it wouldn’t
perform the calculations again. Rather, it would just return the previously
calculated result.

Question: how do we remove all these new facts when we no longer
want them? After all, if we give the command

?- retract(lookup(X,Y,Z)).

Prolog will go through all the facts one by one and ask us whether we
want to remove them! But there’s a much simpler way. Simply use the
command

?- retractall(lookup(_,_,_)).

This will remove all facts aboutlookup/3 from the database.
To conclude our discussion of database manipulation, a wordof

warning. Although it is a useful technique, database manipulation can
lead to dirty, hard to understand, code. If you use it heavilyin a
program with lots of backtracking, understanding what is going on can
be a nightmare. It is a non-declarative, non logical, feature of Prolog
that should be used cautiously.
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2 Collecting Solutions
There may be many solutions to a query. For example, suppose we are
working with the database

child(martha,charlotte).

child(charlotte,caroline).

child(caroline,laura).

child(laura,rose).

descend(X,Y) :- child(X,Y).

descend(X,Y) :- child(X,Z),

descend(Z,Y).

Then if we pose the query

descend(martha,X).

there are four solutions (namelyX=charlotte, X=caroline, X=laura,
and X=rose).

However Prolog generates these solutions one by one. Sometimes we
would like to haveall the solutions to a query, and we would like them
handed to us in a neat, usable, form. Prolog has three built-in predicates
that do this: findall, bagof and setof. In essence, all these predicates
collect all the solutions to a query and put them in a single list — but
there are important differences between them, as we shall see.

The findall/3 predicate

The query

?- findall(Object,Goal,List).

produces a listList of all the objectsObject that satisfy the goal
Goal. Often Object is simply a variable, in which case the query can
be read as:Give me a list containing all the instantiations ofObject
which satisfyGoal.

Here’s an example. Suppose we’re working with the above database
(that is, with the information aboutchild and the definition ofdescend).
Then if we pose the query

?- findall(X,descend(martha,X),Z).

we are asking for a listZ containing all the values ofX that satisfy
descend(martha,X). Prolog will respond
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X = _7489

Z = [charlotte,caroline,laura,rose]

But Object doesn’t have to be a variable, it may be a complex term
that just contains a variable that also occurs inGoal. For example, we
might decide that we want to build a new predicatefromMartha/1 that
is true only of descendants of Martha. We could do this with the query:

?- findall(fromMartha(X),descend(martha,X),Z).

That is, we are asking for a listZ containing all the instantiations of
fromMartha(X) that satisfy the goaldescend(martha,X). Prolog will
respond

X = _7616

Z = [fromMartha(charlotte),fromMartha(caroline),

fromMartha(laura),fromMartha(rose)]

What happens if we ask the following query?

?- findall(X,descend(mary,X),Z).

As there are no solutions for the goaldescend(mary,X) in the
knowledge base.findall/3 returns an empty list.

Note that the first two arguments offindall/3 typically have (at
least) one variable in common. When usingfindall/3, we normally
want to know what solutions Prolog finds for certain variables in the
goal, and we tell Prolog which variables in Goal we are interested in
by building them into the first argument offindall/3.

You might encounter situations, however, wherefindall/3 does
useful work although the first two arguments don’t share any variables.
For example, if you are not interested in who exactly is a descendant
of Martha, but only in how many descendants Martha has, you can use
the following query to find out:

?- findall(Y,descend(martha,X),Z), length(Z,N).

The bagof/3 predicate

The findall/3 predicate is useful, but in certain respects it is rather
crude. For example, suppose we pose the query

?- findall(Child,descend(Mother,Child),List).

We get the response
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Child = _6947

Mother = _6951

List = [charlotte,caroline,laura,rose,caroline,

laura,rose,laura,rose,rose]

Now, this is correct, but sometimes it would be useful if we had a
separate list for each of the different instantiations ofMother.

This is what bagof/3 lets us do. If we pose the query

?- bagof(Child,descend(Mother,Child),List).

we get the response

Child = _7736

Mother = caroline

List = [laura,rose] ;

Child = _7736

Mother = charlotte

List = [caroline,laura,rose] ;

Child = _7736

Mother = laura

List = [rose] ;

Child = _7736

Mother = martha

List = [charlotte,caroline,laura,rose] ;

no

That is, bagof/3 is more fine-grained thanfindall/3. It gives us
the opportunity to extract the information we want in a more structured
way. Moreover,bagof/3 can also do the same job asfindall/3, with
the help of a special piece of syntax, namely^:

?- bagof(Child,Mother^descend(Mother,Child),List).

This says: give me a list of all the values ofChild such that
descend(Mother,Child), and put the result in a list, but don’t worry
about generating a separate list for each value ofMother. So posing
this query yields:

Child = _7870

Mother = _7874

List = [charlotte,caroline,laura,rose,caroline,

laura,rose,laura,rose,rose]
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Note that this is exactly the response thatfindall/3 would have given
us. Still, if this is the kind of query you want to make (and it often is)
it’s simpler to usefindall/3, because then you don’t have to bother
explicitly write down the conditions usinĝ.

There is one important difference betweenfindall/3 and bagof/3,
namely that bagof/3 fails if the goal that is specified in its second
argument is not satisfied (remember, thatfindall/3 returns the empty
list in such cases). So the querybagof(X,descend(mary,X),Z) yields
no.

One final remark. Consider again the query

?- bagof(Child,descend(Mother,Child),List).

As we saw above, this has four solutions. But, once again, Prolog
generates them one by one. Wouldn’t it be nice if we could collect
them all into one list?

And we can. The simplest way is to usefindall/3. The query

?- findall(List,

bagof(Child,descend(Mother,Child),List),

Z).

collects all of bagof/3’s responses into one list:

List = _8293

Child = _8297

Mother = _8301

Z = [[laura,rose],[caroline,laura,rose],[rose],

[charlotte,caroline,laura,rose]]

Another way to do it is withbagof/3:

?- bagof(List,

Child^Mother^bagof(Child,descend(Mother,Child),List),

Z).

List = _2648

Child = _2652

Mother = _2655

Z = [[laura,rose],[caroline,laura,rose],[rose],

[charlotte,caroline,laura,rose]]

This may not be the sort of thing you need to do very often, but it
does show the flexibility and power offered by these predicates.
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The setof/3 predicate

The setof/3 predicate is basically the same asbagof/3, but with
one useful difference: the lists it contains areordered and containno
redundancies(that is, no list contains repeated items).

For example, suppose we have the following database

age(harry,13).

age(draco,14).

age(ron,13).

age(hermione,13).

age(dumbledore,60).

age(hagrid,30).

Now suppose we want a list of everyone whose age is recorded in
the database. We can do this with the query:

?- findall(X,age(X,Y),Out).

X = _8443

Y = _8448

Out = [harry,draco,ron,hermione,dumbledore,hagrid]

But maybe we would like the list to be ordered. We can achieve this
with the following query:

?- setof(X,Y^age(X,Y),Out).

(Note that, just as withbagof/3, we have to tell setof/3 not to
generate separate lists for each value ofY, and again we do this with
the ^ symbol.) This query yields:

X = _8711

Y = _8715

Out = [draco,dumbledore,hagrid,harry,hermione,ron]

Note that the list is alphabetically ordered.
Now suppose we are interested in collecting together all theages

which are recorded in the database. Of course, we could do this with
the following query:

?- findall(Y,age(X,Y),Out).

Y = _8847

X = _8851

Out = [13,14,13,13,60,30]
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But this output is rather messy. It is unordered and containsrepetitions.
By using setof/3 we get the same information in a neater form:

?- setof(Y,X^age(X,Y),Out).

Y = _8981

X = _8985

Out = [13,14,30,60]

Between them, these three predicates offer us a great deal offlexibility
when it comes to collecting solutions. For many purposes, all we need
is findall/3, but if we need more,bagof/3 and setof/3 are there
waiting to help us out. But bear in mind that there is an important
difference betweenfindall/3 on the one hand andbagof/3 and
setof/3 on the other:findall/3 will return an empty list if the goal
has no solutions, whereasbagof/3 and setof/3 would fail in such a
situation.

3 Exercises

Exercise 11.1. Suppose we start with an empty database. We then giveE
the command:

assert(q(a,b)), assertz(q(1,2)), asserta(q(foo,blug)).

What does the database now contain?
We then give the command:

retract(q(1,2)), assertz( (p(X) :- h(X)) ).

What does the database now contain?
We then give the command:

retractall(q(_,_)).

What does the database now contain?

Exercise 11.2. Suppose we have the following database:E

q(blob,blug).

q(blob,blag).

q(blob,blig).

q(blaf,blag).

q(dang,dong).

q(dang,blug).

q(flab,blob).
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What is Prolog’s response to the queries:

findall(X,q(blob,X),List).

findall(X,q(X,blug),List).

findall(X,q(X,Y),List).

bagof(X,q(X,Y),List).

setof(X,Y^q(X,Y),List).

Exercise 11.3. Write a predicatesigma/2 that takes an integern > 0 E
and calculates the sum of all integers from 1 ton. For example:

?- sigma(3,X).

X = 6

yes

?- sigma(5,X).

X = 15

yes

Write the predicate so that results are stored in the database (there
should never be more than one entry in the database for each value)
and are reused whenever possible. For example, suppose we make the
following query:

?- sigma(2,X).

X = 3

yes

?- listing.

sigmares(2,3).

Then, if we go on to ask

?- sigma(3,X).

Prolog should not calculate everything new, but should get the result for
sigma(2,3) from the database and only add 3 to that. It should then
answer:

X = 6

yes

?- listing.

sigmares(2,3).

sigmares(3,6).
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4 Practical Session
Try the following two programming exercises:

1. Sets can be thought of as lists that don’t contain any repeated
elements. For example,[a,4,6] is a set, but[a,4,6,a] is not
(as it contains two occurrences ofa). Write a Prolog program
subset/2 that is satisfied when the first argument is a subset
of the second argument (that is, when every element of the first
argument is a member of the second argument). For example:

?- subset([a,b],[a,b,c])

yes

?- subset([c,b],[a,b,c])

yes

?- subset([],[a,b,c])

yes

Your program should be capable of generating all subsets of an
input set by backtracking. For example, if you give it as input

?- subset(X,[a,b,c])

it should successively generate all eight subsets of[a,b,c].

2. Using thesubset predicate you have just written, andfindall/3,
write a predicatepowerset/2 that takes a set as its first argument,
and returns the powerset of this set as the second argument. (The
powerset of a set is the set of all its subsets.) For example:

?- powerset([a,b,c],P)

should return

P = [[],[a],[b],[c],[a,b],[a,c],[b,c],[a,b,c]]

It doesn’t matter if the sets are returned in some other order. For
example,

P = [[a],[b],[c],[a,b,c],[],[a,b],[a,c],[b,c]]

is fine too.



Chapter 12

Working With Files

This chapter is concerned with various aspect of
file handling and modularity. We will learn three
things:

1. How predicate definitions can be spread across
different files.

2. How to write modular software systems.

3. How to write results to files and how to read
input from files.
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1 Splitting Programs over Files
By this stage you have written lots of programs that use the predicates
append/3 and member/2. What you probably did each time you needed
one of them was to go back to the definition and copy it over to the
file where you wanted to use it. And maybe, after having done that a
few times, you started thinking that it was quite annoying having to
copy the same predicate definitions over and over again — how pleasant
it would be if you could define them somewhere once and for all and
then simply access them whenever you needed them. Well, thatsounds
like a pretty sensible thing to ask for and, of course, Prologoffers you
ways of doing it.

Reading in programs

In fact, you already know a way of telling Prolog to read in predicate
definitions that are stored in a file, namely the

[FileName1]

command. You have been using queries of this form all along totell
Prolog to consult files. But there are two more useful things you should
know about it. First, you can consult many files at once by saying

[FileName1,FileName2,...,FileNameN]

instead. Second, and more importantly, file consultation does not have
to be performed interactively. If you put

:- [FileName1,FileName2,...,FileNameN].

at the top of your program file (saymain.pl) you are telling Prolog to
first consult the listed files before going on to read in the rest of your
program.

This feature gives us a simple way of re-using definitions. For
example, suppose that you keep all the predicate definitionsfor basic list
processing (such asappend/3, member/2, reverse/2, and so on) in a
file called listPredicates.pl. If you want to use them, simply put

:- [listPredicates].

at the top of the file containing the program that needs them. Prolog
will consult listPredicates when reading in that file, and all the
predicate definitions inlistPredicates become available.

There’s one practical point you should be aware of. When Prolog
loads files, it doesn’t normally check whether the files really need to
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be consulted. If the predicate definitions provided by one ofthe files
are already in the database because that file was consulted previously,
Prolog will still consult it again, although it doesn’t needto. This can
be annoying if you are consulting very large files.

The built-in predicateensure_loaded/1 behaves more intelligently in
this respect. It works as follows. On encountering the following directive

:- ensure_loaded([listPredicates]).

Prolog checks whether the filelistPredicates.pl has already been
loaded and only loads it again if it has changed since the lastloading.

Modules

Now imagine that you are writing a program that manages a movie
database. You have designed a predicateprintActors which displays
all actors starring in a particular film, and a predicateprintMovies
which displays all movies directed by a particular filmmaker. Both
definitions are stored in different files, namelyprintActors.pl and
printMovies.pl, and both use an auxiliary predicatedisplayList/1.
Here’s the first file:

% This is the file: printActors.pl

printActors(Film):-

setof(Actor,starring(Actor,Film),List),

displayList(List).

displayList([]):- nl.

displayList([X|L]):-

write(X), tab(1),

displayList(L).

And here’s the second:

% This is the file: printMovies.pl

printMovies(Director):-

setof(Film,directed(Director,Film),List),

displayList(List).

displayList([]):- nl.

displayList([X|L]):-

write(X), nl,

displayList(L).
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Note that displayList/1 has different definitions in the two files:
the actors are printed in a row (usingtab/1), and the films are printed
in a column (usingnl/0). Will this lead to conflicts in Prolog? Let’s
see. We’ll load both programs by placing the statements

% This is the file: main.pl

:- [printActors].

:- [printMovies].

at the top of the main file. Consulting the main file will evoke a
message that looks something like the following:

?- [main].

{consulting main.pl...}

{consulting printActors.pl...}

{printActors.pl consulted, 10 msec 296 bytes}

{consulting printMovies.pl...}

The procedure displayList/1 is being redefined.

Old file: printActors.pl

New file: printMovies.pl

Do you really want to redefine it? (y, n, p, or ?)

What has happened? Well, as both filesprintActors.pl and
printMovies.pl define a predicate calleddisplayList/1, Prolog needs
to choose one of the two definitions (it can’t have two different
definitions for one predicate in its knowledge base).

What to do? Well, perhaps in some of these situations you really
do want to redefine a predicate. But here you don’t — you want two
different definitions because you want movies and actors to be displayed
differently. One way of dealing with this is to give a different name to
one of the two predicates. But let’s face it, this is clumsy. You want to
think of each file as a conceptually self-contained entity; you don’t want
to waste time and energy thinking about how you named predicates in
some other file. And the most natural way of achieving the desired
conceptual independence is to use Prolog’s module system.

Modules essentially allow you to hide predicate definitions. You are
allowed to decide which predicates should be public (that is, callable
from parts of the program that are stored in other files) and which
predicates should be private (that is, callable only from within the
module itself). Thus you will not be able to call private predicates
from outside the module in which they are defined, but there will be
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no conflicts if two modules internally define the same predicate. In our
example, displayList/1 is a good candidate for becoming a private
predicate; it plays a simple auxiliary role in bothprintActors/1 and
printMovies/1, and the details of the role it plays for one predicate
are not relevant to the other.

You can turn a file into a module by putting a module declaration at
the top. Module declarations are of the form

:- module(ModuleName,

List_of_Predicates_to_be_Exported).

Such declarations specify the name of the module and the listof public
predicates, that is, the list of predicates that you want to export. These
will be the only predicates that are accessible from outsidethe module.

Let’s modularise our movie database programs. We only need to
include the following line at the top of the first file:

% This is the file: printActors.pl

:- module(printActors,[printActors/1]).

printActors(Film):-

setof(Actor,starring(Actor,Film),List),

displayList(List).

displayList([]):- nl.

displayList([X|L]):-

write(X), tab(1),

displayList(L).

Here we have introduced a module calledprintActors, with one public
predicateprintActors/1. The predicatedisplayList/1 is only known
in the scope of the moduleprintActors, so its definition won’t affect
any other modules.

Likewise we can turn the second file into a module:

% This is the file: printMovies.pl

:- module(printMovies,[printMovies/1]).

printMovies(Director):-

setof(Film,directed(Director,Film),List),

displayList(List).
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displayList([]):- nl.

displayList([X|L]):-

write(X), nl,

displayList(L).

Again, the definition of thedisplayList/1 is only known in the scope
of the moduleprintMovies, so there won’t be any clash when loading
both modules at the same time.

Modules can be loaded with the built-in predicatesuse_module/1.
This will import all predicates that were defined as public bythe module.
In other words, all public predicates will be accessible. Todo this we
need to change the main file as follows:

% This is the file: main.pl

:- use_module(printActors).

:- use_module(printMovies).

If you don’t want to use all public predicates of a module, butonly
some of them, you can use the two-place version ofuse_module, which
takes a list of predicates that you actually want to import asits second
argument. So, by putting

% This is the file: main.pl

:- use_module(printActors,[printActors/1]).

:- use_module(printMovies,[printMovies/1]).

at the top of the main file, we have explicitly stated that we can use
printActors/1 and printMovies/1, and nothing else (in this case,
of course, the declaration is unnecessary as there are no other public
predicates that we could use). Needless to say, you can only import
predicates that are actually exported by the relevant module.

Libraries

Many of the most common predicates are provided predefined, in one
way or another, by most Prolog implementations. If you have been using
SWI Prolog, for example, you will probably have noticed thatpredicates
like append/3 and member/2 come as part of the system. That’s a
speciality of SWI, however. Other Prolog implementations,like SICStus
for example, don’t have them built-in, but provide them as part of a
library.
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Libraries are modules defining common predicates, and can beloaded
using the normal commands for importing modules. When specifying
the name of the library that you want to use, you have to tell Prolog
that this module is a library, so that Prolog knows where to look for
it (namely, in the place where Prolog keeps its libraries, not in the
directory where your other code is). For example, putting the directive

:- use_module(library(lists)).

at the top of your file tells Prolog to load a library calledlists.
In SICStus Prolog, this library contains a set of commonly used list
processing predicates.

Libraries can be very useful and they can save you a lot of work.
Moreover, the code in libraries has typically been written by excellent
programmers, and is likely to be highly efficient and problem-free.
However the way that libraries are organised and the inventory of
predicates provided by libraries are by no means standardised across
different Prolog implementations. This means that if you want your
program to run with different Prolog implementations, it isprobably
easier and faster to define your own library modules (using the techniques
that we saw in the last section) rather than to try to work around
the incompatibilities between the library systems of different Prolog
implementations.

2 Writing to Files
Many applications require that output be written to a file rather than to
the screen. In this section we will explain how to do this in Prolog.

In order to write to a file we have to create one (or open an existing
one) and associate a stream with it. You can think of streams as
connections to files. In Prolog, streams are blessed with names in a
rather user-unfriendly format, such as’\$stream’(183368). Luckily,
you never have to bother about the exact names of streams — although
Prolog assigns these names internally, you can use Prolog’sunification
to match the name to a variable and make use of the variable rather
than the name of the stream itself.

Say you want to print the string ’Hogwarts’ to the filehogwarts.txt.
This is done as follows:

...

open(’hogwarts.txt’,write,Stream),

write(Stream,’Hogwarts’), nl(Stream),

close(Stream),

...
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What’s happening here? Well, first the built-in predicateopen/3 is
used to create the filehogwarts.txt. The second argument ofopen/3
indicates that we want to open a new file (overwriting any existing file
with the same name). The third argument ofopen/3 returns the name
of the stream. Secondly, we write ’Hogwarts’ on the stream and issue
a newline command as well. After this we are ready, and close the
stream, using the built-inclose/1.

And that’s more or less all there is to it. As promised, we werenot
interested in the name of the stream — we used the variableStream

to pass it around. Also note that thewrite/2 predicate we used here
is basically a more general form of thewrite/1 predicates we used in
Chapter 9 for writing to the screen.

What if you don’t want to overwrite an existing file but appendto an
existing one? This is done by choosing a different mode when opening
the file: instead ofwrite, useappend as value for the second argument
of open/3. If a file of the given name doesn’t exist, it will be created.

3 Reading from Files
In this section we show how to read from files. Reading information
from files is straightforward in Prolog — or at least, it is if this
information is given in the form of Prolog terms followed by full stops.
Consider the filehouses.txt:

gryffindor.

hufflepuff.

ravenclaw.

slytherin.

Here is a Prolog program that opens this file, reads the information from
it, and displays it on the screen:

main:-

open(’houses.txt’,read,Str),

read(Str,House1),

read(Str,House2),

read(Str,House3),

read(Str,House4),

close(Str),

write([House1,House2,House3,House4]), nl.

This opens a file in reading mode, then reads four Prolog termsusing the
built-in predicateread/2, closes the stream, and prints the information
as a list.
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All very straightforward. Nonetheless, theread/2 predicate needs to
be handled with care. First of all, it only is able to handle Prolog
terms (we’ll say more about this problem shortly). And secondly, it will
cause a run-time error if we use it to read from a stream when there
is nothing to read. Is there an elegant way to overcome this second
problem?

There is. The built-in predicateat_end_of_stream/1 checks whether
the end of a stream has been reached, and can be used as a safety-net.
For a streamX, at_end_of_stream(X) will evaluate to true when the
end of the streamX is reached (in other words, when all terms in the
corresponding file have been read).

The following code is a modified version of our earlier reading-in
program, which shows howat_end_of_stream/1 can be incorporated:

main:-

open(’houses.txt’,read,Str),

read_houses(Str,Houses),

close(Str),

write(Houses), nl.

read_houses(Stream,[]):-

at_end_of_stream(Stream).

read_houses(Stream,[X|L]):-

\+ at_end_of_stream(Stream),

read(Stream,X),

read_houses(Stream,L).

Now for the nastier problem. Recall thatread/2 only reads in Prolog
terms. If you want to read in arbitrary input, things become rather
unpleasant, as Prolog forces you to read information on the level of
characters. The predicate that you need in this case isget_code/2

which reads the next available character from a stream. Characters are
represented in Prolog by their integer codes. For example,get_code/2

will return 97 if the next character on the stream is ana.
Usually we are not interested in these integer codes, but in the

characters — or rather, in the atoms that are made up of lists of these
characters. How do we get our hands on these (lists of) characters? One
way is to use the built-in predicateatom_codes/2 that we introduced
in Chapter 9 to convert a list of integers into the corresponding atom.
We’ll use this technique in the following example, a predicate that reads
in a word from a stream.
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readWord(InStream,W):-

get_code(InStream,Char),

checkCharAndReadRest(Char,Chars,InStream),

atom_codes(W,Chars).

checkCharAndReadRest(10,[],_):- !.

checkCharAndReadRest(32,[],_):- !.

checkCharAndReadRest(-1,[],_):- !.

checkCharAndReadRest(end_of_file,[],_):- !.

checkCharAndReadRest(Char,[Char|Chars],InStream):-

get_code(InStream,NextChar),

checkCharAndReadRest(NextChar,Chars,InStream).

How does this work? It reads in a character and then checks whether
this character is a blank (integer code 32), a new line (10) orthe end
of the stream (−1). In any of these cases a complete word has been
read, otherwise the next character is read.

4 Exercises

Exercise 12.1. Write code that createshogwart.houses, a file thatE
that looks like this:

gryffindor

hufflepuff ravenclaw

slytherin

You can use the built-in predicatesopen/3, close/1, tab/2, nl/1, and
write/2.

Exercise 12.2. Write a Prolog program that reads in a plain textE
file word by word, and asserts all read words and their frequency into
the Prolog database. You may use the predicatereadWord/2 to read in
words. Use a dynamic predicateword/2 to store the words, where the
first argument is a word, and the second argument is the frequency of
that word.
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5 Practical Session
In this practical session, we want to combine what we have learned
about file handling with some topics we met in earlier chapters. The
goal is to write a program for running a DCG grammar on a testsuite,
so that the performance of the grammar can be checked.

What is a testsuite? It is a file that contains lots of possibleinputs
(and expected outputs) for some program. In this case, a testsuite
will be a file that has lists representing grammatical and ungrammatical
sentences, such as[the,woman,shoots,the,cow,under,the,shower]
or [him,shoots,woman]. The test program should take this file, run
the grammar on each of the sentences, and store the results inanother
file. We can then look at the output file to check whether the
grammar answered everywhere the way it should have. When developing
grammars, testsuites like this are extremely useful for making sure that
any modifications we make to the grammar don’t have unwanted effects.

Step 1

Take the DCG that you built in the practical session of Chapter 8 and
turn it into a module, exporting the predicates/3, that is, the predicate
that lets you parse sentences and returns the parse tree as its first
argument.

Step 2

In the practical session of Chapter 9, you had to write a program for
pretty printing parse trees onto the screen. Turn that into amodule as
well.

Step 3

Now modify the program so that it prints the tree not to the screen but
to a given stream. That means that the predicatepptree should now
be a two-place predicate taking the Prolog representation of a parse tree
and a stream as arguments.

Step 4

Import both modules into a file and define a two-place predicate test

which takes a list representing a sentence (such as[a,woman,shoots]),
parses it, and writes the result to the file specified by the second
argument oftest. Check that everything is working as it should.

Step 5

Finally, modify test/2, so that it takes a filename instead of a sentence
as its first argument, reads in the sentences given in the file one by one,
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parses them, and writes the sentence as well as the parsing result into
the output file. For example, if your input file looked like this:

[the,cow,under,the,table,shoots].

[a,dead,woman,likes,he].

the output file should look something like this:

[the, cow, under, the, table, shoots]

s(

np(

det(the)

nbar(

n(cow))

pp(

prep(under)

np(

det(the)

nbar(

n(table)))))

vp(

v(shoots)))

[a, dead, woman, likes, he]

no

Step 6

Now (if you are in for some real Prolog hacking) try to write a module
that reads in sentences terminated by a full stop or a line break from a
file, so that you can give your testsuite as

the cow under the table shoots .

a dead woman likes he .

instead of

[the,cow,under,the,table,shoots].

[a,dead,woman,likes,he].
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Step 7

Make the testsuite environment more sophisticated, by adding information
to the input file about the expected output (in this case, whether the
sentences has a parse or not). Then modify the program so thatit
checks whether the expected output matches the obtained output.





Answers to the Exercises

Yes, yes, you’re right. Wedid put in the answers to all the exercises.
Reluctantly and against our better judgement. Foolishly bowing to
immense pressure. And now you’ve gone and found them. . .

But just because we’ve done something dumb, it doesn’t mean you
have to too. Once you have seen the answer to an exercise, you’ll lose
forever the chance of working it out yourself. But you’ve still got time
to put things right. So don’t turn this page! Go back and try again!
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Didn’t you hear what we just said?
This really is your very last chance!
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Answer 1.1

1. vINCENT is an atom: it starts with a lower-case letter.

2. Footmassage is a variable: it starts with an upper-case letter.

3. variable23 is an atom: it starts with a lower-case letter.

4. Variable2000 is a variable: it starts with an uppercase letter.

5. big kahuna burger is an atom: it starts with a lower-case letter.

6. ’big kahuna burger’ is an atom: it is between two single quotes.

7. big kahuna burger is neither: variables can never contain spaces,
and atoms cannot either — unless the atom starts and ends witha
single quote.

8. ’Jules’ is an atom: it is enclosed between single quotes.

9. Jules is a variable: it starts with an underscore.

10. ’ Jules’ is an atom: it is enclosed between single quotes.

Answer 1.2

1. loves(Vincent,mia) is a complex term. Its functor isloves
and its arity is 2.

2. ’loves(Vincent,mia)’ is an atom: it is enclosed between single
quotes.

3. Butch(boxer) is not a term. It starts with an upper-case letter
and therefore cannot be an atom or a complex term. It cannot
be a variable either because variables are not supposed to contain
parentheses.

4. boxer(Butch) is a complex term. Its functor isboxer and its
arity is 1.

5. and(big(burger),kahuna(burger)) is a complex term. Its
functor is and and its arity is 2. The arguments are again complex
terms.

6. and(big(X),kahuna(X)) is a complex term. Its functor isand
and its arity 2.
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7. and(big(X),kahuna(X)) is not a term. It starts with an
underscore and can therefore not be an atom or a complex term.
It cannot be a variable either because variables are not supposed
to contain parentheses or commas.

8. (Butch kills Vincent) is not a term. It contains parentheses
and empty spaces and therefore can neither be an atom nor a
variable. It doesn’t have the right format for a complex term
either; in particular, it has no functor.

9. kills(Butch Vincent) is not a term. However, adding a comma
between Butch and Vincent would make it into a complex term.

10. kills(Butch,Vincent is not a term. However, adding a closing
parenthesis at the end would make it into a complex term.

Answer 1.3

There are three facts and four rules in this knowledge base. This means
that there are seven clauses. The heads of the rules areperson(X),
loves(X,Y), and father(Y,Z) (everything on the left-hand side of
the rules), the goals areman(X), woman(X), father(X,Y), man(Y),
son(Z,Y), and daughter(Z,Y) (everything on the right hand side of
the rules). This knowledge base defines five predicates, namely woman/1,
man/1, person/1, loves/2, and father/2.

Answer 1.4

Here is an example of what your answers could look like. They,of
course, don’t have to lookexactly like that. For example, the first fact
could also bekiller(’Butch’) or killer(b) or even k(50), if you
decide to represent Butch by the number50 and the property of being
a killer by the predicatek/1.

1. killer(butch).

2. married(mia, marsellus).

3. dead(zed).

4. kill(marsellus,X):- give(X,mia,Y), footmassage(Y).

5. love(mia,X):- good_dancer(X).

6. eat(jules,X):- nutritious(X).

eat(jules,X):- tasty(X).
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Answer 1.5

1. ?- wizard(ron).

yes

2. ?- witch(ron).

no

or

ERROR: Undefined procedure: witch/1

3. ?- wizard(hermione).

no

4. ?- witch(hermione).

no

or

ERROR: Undefined procedure: witch/1

5. ?- wizard(harry).

yes

6. ?- wizard(Y).

Y = ron ;

Y = harry ;

no

7. ?- witch(Y).

no

or

ERROR: Undefined procedure: witch/1

Answer 2.1

1. bread = bread unifies.

2. ’Bread’ = bread doesn’t unify.

3. ’bread’ = bread unifies.

4. Bread = bread unifies; the variableBread gets instantiated with
the atombread.
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5. bread = sausage doesn’t unify.

6. food(bread) = bread doesn’t unify.

7. food(bread) = X unifies; X gets instantiated withfood(bread).

8. food(X) = food(bread) unifies; X gets instantiated withbread.

9. food(bread,X) = food(Y,sausage) unifies; X gets instantiated
with sausage and Y gets instantiated withbread.

10. food(bread,X,beer) = food(Y,sausage,X) doesn’t unify; X

cannot be instantiated withsausage as well asbeer.

11. food(bread,X,beer) = food(Y,kahuna burger) doesn’t unify;
the functors are of different arity.

12. food(X) = X is trickier. According to the basic definition of
unification given in the text, these two terms do not unify, as
no matter what (finite) term we instantiateX to, the two sides
won’t be identical. However (as we mentioned in the text) modern
Prolog interpreters will detect that there is a problem hereand will
instantiateX with the ‘infinite term’ food(food(food(...))), and
report that unification succeeds. In short, there is no ‘correct’
answer to this question; it’s essentially a matter of convention. The
important point is to understand why such unifications need to be
handled with care.

13. meal(food(bread),drink(beer)) = meal(X,Y) unifies; X gets
instantiated withfood(bread) and Y with drink(beer).

14. meal(food(bread),X) = meal(X,drink(beer)) doesn’t unify; X
cannot get instantiated twice with different things.

Answer 2.2

1. ?- magic(house_elf). no

2. ?- wizard(harry).

no

or

ERROR: undefined procedure wizard/1

3. ?- magic(wizard).

no
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4. ?- magic(’McGonagall’).

yes

5. ?- magic(Hermione).

Hermione = dobby ;

Hermione = hermione ;

Hermione = ’McGonagall’ ;

Hermione = rita_skeeter ;

no

The search tree for the last query is:

?- magic(Hermione)

/ | \

Hermione=_G65 Hermione=_G76 Hermione=_G87

/ | \

?- house_elf(_G65) | \

| | \

_G65=dobby ?- wizard(_G76) \

| | |

| | ?- witch(_G87)

success fail / | \

/ | \

_G87=hermione | \

| | \

| _G87=’McGonag’ \

| | \

| | _G87=r_skeeter

| | |

success success success

Answer 2.3

?- sentence(W1,W2,W3,W4,W5).

W1 = a,

W2 = criminal,

W3 = eats,

W4 = a,

W5 = criminal ;

W1 = a,

W2 = criminal,

W3 = eats,
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W4 = a,

W5 = ’big kahuna burger’ ;

W1 = a,

W2 = criminal,

W3 = eats,

W4 = every,

W5 = criminal ;

W1 = a,

W2 = criminal,

W3 = eats,

W4 = every,

W5 = ’big kahuna burger’ ;

W1 = a,

W2 = criminal,

W3 = likes,

W4 = a,

W5 = criminal ;

W1 = a,

W2 = criminal,

W3 = likes,

W4 = a,

W5 = ’big kahuna burger’ ;

W1 = a,

W2 = criminal,

W3 = likes,

W4 = every,

W5 = criminal ;

W1 = a,

W2 = criminal,

W3 = likes,

W4 = every,

W5 = ’big kahuna burger’ ;

W1 = a,

W2 = ’big kahuna burger’,
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W3 = eats,

W4 = a,

W5 = criminal ;

.

.

.

W1 = every,

W2 = ’big kahuna burger’,

W3 = likes,

W4 = every,

W5 = ’big kahuna burger’ ;

no

Answer 2.4

crossword(V1,V2,V3,H1,H2,H3):-

word(V1,_,A,_,B,_,C,_),

word(V2,_,D,_,E,_,F,_),

word(V3,_,G,_,H,_,I,_),

word(H1,_,A,_,D,_,G,_),

word(H2,_,B,_,E,_,H,_),

word(H3,_,C,_,F,_,I,_).

Answer 3.1

No, it’s not a good idea to reformulatedescend/2 in that way: it
will get in an infinite loop for certain queries. For example,if one
queries?- descend(rose,X), the first clause will fail, but the second
clause applies. But the second clause tries to find a solutionfor ?-

descend(rose,Z), and so on.

Answer 3.2

directlyIn(irina,natasha).

directlyIn(natasha,olga).

directlyIn(olga,katarina).

in(X,Y):- directlyIn(X,Y).

in(X,Y):- directlyIn(X,Z), in(Z,Y).

Answer 3.3

travelFromTo(X,Y):-

directTrain(X,Y).
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travelFromTo(X,Y):-

directTrain(X,Z),

travelFromTo(Z,Y).

Answer 3.4

greater_than(succ(X),0).

greater_than(succ(X),succ(Y)):- greater_than(X,Y).

Answer 3.5

swap(leaf(X),leaf(X)).

swap(tree(B1,B2),tree(B2Swapped,B1Swapped)):-

swap(B1,B1Swapped),

swap(B2,B2Swapped).

Answer 4.1

1. ?- [a,b,c,d] = [a,[b,c,d]].

No

(The first list has four elements; the second only two.)

2. ?- [a,b,c,d] = [a|[b,c,d]].

Yes

3. ?- [a,b,c,d] = [a,b,[c,d]].

No

4. ?- [a,b,c,d] = [a,b|[c,d]].

Yes

5. ?- [a,b,c,d] = [a,b,c,[d]].

No

6. ?- [a,b,c,d] = [a,b,c|[d]].

Yes

7. ?- [a,b,c,d] = [a,b,c,d,[]].

No

8. ?- [a,b,c,d] = [a,b,c,d|[]].

Yes

9. ?- [] = _.

Yes



Answers to the Exercises 243

10. ?- [] = [_].

No

(The first list is empty; the second list has one element.)

11. ?- [] = [_|[]].

No

(The first list is empty; the second list has one element.)

Answer 4.2

1. [1|[2,3,4]] is correct. The list has four elements.

2. [1,2,3|[]] is correct. The list has three elements.

3. [1|2,3,4] is not correct. The tail, that is, what’s right of|, has
to be a list (as in the first example) but it’s not.

4. [1|[2|[3|[4]]]] is correct. The list has four elements.

5. [1,2,3,4|[]] is correct. The list has four elements.

6. [[]|[]] is correct. The list has one element, namely the empty
list.

7. [[1,2]|4] is not correct. The tail is not a list.

8. [[1,2],[3,4]|[5,6,7]] is correct. The list has five elements.

Answer 4.3

second(X,[_,X|_]).

Answer 4.4

swap12([H1,H2|T],[H2,H1|T]).

Answer 4.5

The base clause: the input list is empty. There is nothing to translate,
so the output list is empty as well.

listtran([],[]).

The recursive clause: we translate the headG of the input list using
the predicatetran/2. The result is E and becomes the head of the
output list. Then we recursively translate the rest of the input. The
result becomes the rest of the output.

listtran([G|GT],[E|ET]):-

tran(G,E),

listtran(GT,ET).
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Answer 4.6

The base clause: the input list is empty. So there is nothing to write to
the output list. So that is empty as well.

twice([],[]).

The recursive clause: the first two elements of the output list are
both identical to the head of the input list. The recursive call simply
produces the tail of the output list from the tail of the inputlist.

twice([H|TIn],[H,H|TOut]):-

twice(TIn, TOut).

Answer 4.7

?- member(a,[c,b,a,y]).

|

?- member(a,[b,a,y])

|

?- member(a,[a,y])

|

success

?- member(x,[a,b,c]).

|

?- member(x,[b,c]).

|

?- member(x,[c]).

|

?- member(x,[]).

|

fail

?- member(X,[a,b,c]).

/ \

X=a X=_G65

| |

success ?-member(_G65,[b,c]).

/ \

_G65=b ?- member(_G65,[c])

| |

success _G65=c

|

success
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Answer 5.1

1. Prolog answers:X = 3*4. Variable X is instantiated with the
complex term3*4.

2. Prolog answers:X = 12.

3. Prolog answers: ERROR: Arguments are not sufficiently instantiated.

4. Prolog answers:X = Y.

5. Prolog answers: yes.

6. Prolog answers: yes.

7. Prolog answers: ERROR: Arguments are not sufficiently instantiated.

8. Prolog answers:X = 3.

9. Prolog answers: no. Prolog evaluates the arithmetic expression to
the right of is/2. Then it tries to unify the result with the term
to the left of is/2. This fails as the number3 does not unify the
complex term1+2.

10. Prolog answers:X = 3.

11. Prolog answers: yes.3+2 and +(3,2) are two ways of writing
the same term.

12. Prolog answers: yes.

13. Prolog answers: yes.

14. Prolog answers: yes.

15. Prolog answers: no.

16. Prolog answers: yes.

Answer 5.2

increment(X,Y):-

Y is X + 1.

sum(X,Y,Z):-

Z is X + Y.
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Answer 5.3

addone([],[]).

addone([H|T],[H1|T1]):-

H1 is H + 1,

addone(T,T1).

Answer 6.1

doubled(L):-

append(L1,L1,L).

Answer 6.2

A solution usingrev/2:

palindrome(L):-

rev(L,L).

A solution that is not using a reverse predicate:

palindrome(L):-

check_palindrome(L,[]).

check_palindrome(L,L).

check_palindrome([_|L],L).

check_palindrome([H|T],LPal):-

check_palindrome(T,[H|LPal]).

Answer 6.3

toptail([H|TInList],OutList):-

append(OutList,[_],TInList).

Answer 6.4

A solution usingreverse/2:

last(L,X):-

reverse(L,[X|_]).

An alternative solution:

last([X],X).

last([_|L],X):-

last(L,X).
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Answer 6.5

A solution usingappend/3:

swapfl([H1|T1],[H2|T2]):-

append(Middle,[H2],T1),

append(Middle,[H1],T2).

An alternative solution:

swapfl([First,Last],[Last,First]).

swapfl([First,Next|L1],[Last,Next|L2]):-

swapfl([First|L1],[Last|L2]).

Answer 6.6

In this solution the street is represented as list of three houses. A house
is represented as a 3-place (colour, nationality, pet) complex term. With
the help of member/2 and sublist/2 we check the constraints of the
puzzle.

zebra(N) :-

Street = [House1,House2,House3],

member(house(red,_,_),Street),

member(house(blue,_,_),Street),

member(house(green,_,_),Street),

member(house(red,english,_),Street),

member(house(_,spanish,jaguar),Street),

sublist([house(_,_,snail),house(_,japanese,_)],Street),

sublist([house(blue,_,_),house(_,_,snail)],Street),

member(house(_,N,zebra),Street).

Answer 7.1

The internal representation of the DCG rules that Prolog will work with:

s(A,B) :- foo(A,C), bar(C,D), wiggle(D,B).

foo([choo|A],A).

foo(A,B) :- foo(A,C), foo(C,B).

bar(A,B) :- mar(A,C), zar(C,B).

mar(A,B) :- me(A,C), my(C,B).

me([i|A],A).

my([am|A],A).

zar(A,B) :- blar(A,C), car(C,B),

blar([a|A],A).
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car([train|A],A).

wiggle([toot|A],A).

wiggle(A,B) :- wiggle(A,C), wiggle(C,B).

The first three sentences that Prolog will generate:

1. choo i am a train toot

2. choo i am a train toot toot

3. choo i am a train toot toot toot

Answer 7.2

s --> [a,b].

s --> a, s, b.

a --> [a].

b --> [b].

Answer 7.3

s --> [].

s --> a, s, b.

a --> [a].

b --> [b,b].

Answer 8.1

s --> np(Num),vp(Num).

np(Num) --> det(Num),n(Num).

vp(Num) --> v(Num),np(_).

vp(Num) --> v(Num).

det(_) --> [the].

det(sg) --> [a].

n(sg) --> [woman].

n(pl) --> [women].

n(sg) --> [man].

n(pl) --> [men].

n(sg) --> [apple].

n(pl) --> [apples].

n(sg) --> [pear].

n(pl) --> [pears].
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v(sg) --> [eats].

v(pl) --> [eat].

Answer 8.2

kanga(A,B,C,D,E):-

roo(A,B,D,F),

jumps(C,C,F,G),

marsupial(A,B,C),

E=G.

Answer 9.1

1. The query?- 12 is 2*6. succeeds.

2. The query?- 14 =\= 2*6. succeeds.

3. The query?- 14 = 2*7. fails.

4. The query?- 14 == 2*7. fails.

5. The query?- 14 \== 2*7. succeeds.

6. The query?- 14 =:= 2*7. succeeds.

7. The query?- [1,2,3|[d,e]] == [1,2,3,d,e]. succeeds.

8. The query?- 2+3 == 3+2. fails.

9. The query?- 2+3 =:= 3+2. succeeds.

10. The query?- 7-2 =\= 9-2. succeeds.

11. The query?- p == ’p’. succeeds.

12. The query?- p =\= ’p’. yields an error.

13. The query?- vincent == VAR. fails.

14. The query?- vincent=VAR, VAR==vincent. succeeds.

Answer 9.2

1. The query?- .(a,.(b,.(c,[]))) = [a,b,c]. succeeds.

2. The query?- .(a,.(b,.(c,[]))) = [a,b|[c]]. succeeds.

3. The query?- .(.(a,[]),.(.(b,[]),.(.(c,[]),[])))=X. suc-
ceeds and and X = [[a],[b],[c]].

4. The query?- .(a,.(b,.(.(c,[]),[]))) = [a,b|[c]]. fails.
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Answer 9.3

termtype(Term,variable):-

var(Term).

termtype(Term,atom):-

atom(Term).

termtype(Term,number):-

number(Term).

termtype(Term,constant):-

atomic(Term).

termtype(Term,simple_term):-

atomic(Term).

termtype(Term,simple_term):-

var(Term).

termtype(Term,complex_term):-

nonvar(Term),

functor(Term,_,Arity),

Arity > 0.

termtype(Term,term):-

termtype(Term,simple_term).

termtype(Term,term):-

termtype(Term,complex_term).

Answer 9.4

First, a solution that doesn’t use univ:

groundterm(Term):-

atomic(Term).

groundterm(Term):-

nonvar(Term),

functor(Term,_,Arity),

groundterms(Term,Arity).

groundterms(_,0).
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groundterms(ComplexTerm,Arg):-

Arg > 0,

arg(Arg,ComplexTerm,Term),

groundterm(Term),

NextArg is Arg - 1,

groundterms(ComplexTerm,NextArg).

And here is a solution that does use univ:

groundterm(Term) :-

atomic(Term).

groundterm(Term) :-

nonvar(Term),

Term =.. [_|Args],

groundterms(Args).

groundterms([]).

groundterms([H|T]) :-

groundterm(H),

groundterms(T).

Answer 9.5

Given these operator definitions,

1. X is a witch corresponds to the Prolog termis a(X,witch);

2. harry and ron and hermione are friends corresponds to the
Prolog termare(and(harry,and(ron,hermione)),friends);

3. harry is a wizard and likes quidditch is not a Prolog term;

4. dumbledore is a famous wizard corresponds to the Prolog term
isa a(dumbledore,famous(wizard)).

Answer 10.1

?- p(X).

X = 1 ;

X = 2 ;

No

?- p(X), p(Y).

X = 1

Y = 1 ;
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X = 1

Y = 2 ;

X = 2

Y = 1 ;

X = 2

Y = 2 ;

No

?- p(X), !, p(Y).

X = 1

Y = 1 ;

X = 1

Y = 2 ;

No

Answer 10.2

The original program tells whether a number is positive, zero, or
negative. It does that using three clauses. But if one of the three clauses
succeeds in solving a goal, the others do not apply. Hence we can add
green cuts:

class(Number,positive):- Number > 0, !.

class(0,zero):- !.

class(Number,negative):- Number < 0, !.

Answer 10.3

A version of split/3 without using the cut:

split([],[],[]).

split([Number|L],[X|Pos],Neg):-

Number >= 0,

split(L,Pos,Neg).

split([Number|L],Pos,[X|Neg]):-

Number < 0,

split(L,Pos,Neg).

A version of split/3 using the cut:

split([],[],[]):- !.
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split([Number|L],[X|Pos],Neg):-

Number > 0, !,

split(L,Pos,Neg).

split([Number|L],[X|Pos],Neg):-

Number = 0, !,

split(L,Pos,Neg).

split([Number|L],Pos,[X|Neg]):-

Number < 0, !,

split(L,Pos,Neg).

Answer 10.4

directTrain(saarbruecken,dudweiler).

directTrain(forbach,saarbruecken).

directTrain(freyming,forbach).

directTrain(stAvold,freyming).

directTrain(fahlquemont,stAvold).

directTrain(metz,fahlquemont).

directTrain(nancy,metz).

trainConnection(A,B):- directTrain(A,B).

trainConnection(A,B):- directTrain(B,A).

route(A,B,Route):-

route(B,A,[B],Route).

route(A,B,Route,[B|Route]):-

trainConnection(A,B),

\+ member(B,Route).

route(A,C,SoFar,Route):-

trainConnection(A,B),

\+ member(B,SoFar),

route(B,C,[B|SoFar],Route).

Answer 11.1

After the first query the database contains:

q(foo,blug).

q(a,b).

q(1,2).
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After the second command the database contains:

q(foo,blug).

q(a,b).

p(X):- h(X).

After the third command the database contains:

p(X):- h(X).

Answer 11.2

1. List = [blug,blag,blig] ;

No

2. List = [blob,dang] ;

No

3. List = [blob,blob,blob,blaf,dang,dang,flab] ;

No

4. List = [blob] ;

Y = blag

List = [blob,blaf] ;

Y = dong

List = [dang] ;

Y = blug

List = [blob,dang] ;

Y = blob

List = [flab] ;

No

5. List = [blaf,blob,dang,flab] ;

No

Answer 11.3

:- dynamic sigmares/2.

sigmares(0,0).

sigma(Number,Sum):-

sigmares(Number,Sum).

sigma(Number,Total):-
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Number > 0,

\+ sigmares(Number,Total),

NewNumber is Number - 1,

sigma(NewNumber,SubTotal),

Total is SubTotal + Number,

assert(sigmares(Number,Total)).

Answer 12.1

piece_of_code:-

open(’hogwart.houses’,write,Stream),

tab(Stream,6),

write(Stream,gryffindor),

nl(Stream),

write(Stream,hufflepuf),

tab(Stream,6),

write(Stream,ravenclaw),

nl(Stream),

tab(Stream,6),

write(Stream,slytherin),

nl(Stream),

close(Stream).

Answer 12.2

:- dynamic word/2.

readWord(Stream,W,Status):-

get_code(Stream,Char),

checkCharAndReadRest(Char,Chars,Stream,Status),

atom_codes(W,Chars).

checkCharAndReadRest(10,[],_,ok):- !.

checkCharAndReadRest(32,[],_,ok):- !.

checkCharAndReadRest(-1,[],_,eof):- !.

checkCharAndReadRest(end_of_file,[],_,eof):- !.

checkCharAndReadRest(Char,[Char|Chars],Stream,Status):-

get_code(Stream,NextChar),

checkCharAndReadRest(NextChar,Chars,Stream,Status).

read_text(File):-

open(File,read,Stream),

read_words(Stream,ok),

close(Stream).
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read_words(_,eof).

read_words(Stream,PrevStatus):-

\+ PrevStatus = eof,

readWord(Stream,Word,Status),

addWord(Word),

read_words(Stream,Status).

addWord(Word):-

word(Word,Freq), !,

retract( word(Word,Freq) ),

NewFreq is Freq + 1,

assert( word(Word,NewFreq) ).

addWord(Word):-

assert( word(Word,1) ).



Further Reading

While we think Learn Prolog Now! is a good first book on Prolog,
it certainly shouldn’t be the last one you look at. To help youtake
the next step, we have listed, with comments, some of our favourite
Prolog textbooks, and Prolog-based books on Artificial Intelligence (AI)
and Natural Language Processing (NLP).

Prolog textbooks

• Bratko (1990): Prolog Programming for Artificial Intelligence.
Addison-Wesley. We strongly recommend this book. If you liked
Learn Prolog Now! we think you’ll find this a natural followup.
Its strong point is the wide variety of programming styles and
applications it considers. This is a big book, and it will take you
quite a while to work through it. But if you do so, you’ll soon be
writing very substantial Prolog programs indeed, and you’ll learn a
lot about AI along the way.

• Clocksin (2003): Clause and Effect: Prolog Programming for the
Working Programmer. Springer. Strongly recommended. If you
want a concise practically oriented follow up toLearn Prolog
Now! that will really hone your Prolog skills, you can’t do better
than this. It explains some interesting theory, but its realstrength
is that it is based around a collection of worksheets. Solve the
problems they contain, and you’ll soon be flying.

• Clocksin and Mellish (1987):Programming in Prolog. Springer.
This was one of the earliest, if not the earliest, textbook onProlog
programming. It won’t take you far beyondLearn Prolog Now!,
but it is clearly written, and its discussions of DCGs, and ofthe
link between logic and Prolog, are accessible and worth looking at.

• O’Keefe (1990): Craft of Prolog. MIT Press. This is the book
you should read when you’re convinced that you know all about
Prolog and have nothing left to learn. Unless you truly are a
Prolog guru, you will swiftly learn that there are far deeperlevels
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of Prolog expertise than you suspected, and that you still have a
great deal to master. Superb.

• Sterling (1994): The Art of Prolog. MIT Press. In Learn
Prolog Now! we don’t say much about the abstract idea of logic
programming. If the little we have said has wakened your interest,
this is the book to go for next. Clearly written, it will give you
a good grounding in the basic theory of logic programming, and
link it to the practical world of Prolog.

Applying Prolog in AI and NLP

• Blackburn and Bos (2005): Representation and Inference for
Natural Language. A First Course in Computational Semantics.
CSLI Lecture Notes. Introduces natural language semanticsfrom
a computational perspective using Prolog as the implementation
language. Learn Prolog Now! was originally intended to be an
appendix to this book.

• Covington (1994): Natural Language Processing for Prolog
Programmers. Prentice-Hall. Solid, well-written book on NLP that
uses Prolog as the implementation language. If you haven’t done
any NLP before, and want to put your Prolog to work, this is a
good place to start.

• Pereira and Shieber (1987):Prolog and Natural Language Analysis.
CSLI Lecture Notes. A classic. Several generations of PhD
students have cut their teeth on this one. Required reading.

• Reiter (2001): Knowledge in Action: Logical Foundations for
Specifying and Implementing Dynamical Systems. MIT Press. This
book examines, extends, and implements the Situation Calculus,
a well known AI formalism for representing and reasoning about
changing information. It’s an important book, and may not be
completely accessible if you don’t have some theoretical background.
But as an example of how Prolog can be put to work, it takes
some beating.

• Shoham (1994): Artificial Intelligence Techniques in Prolog.
Morgan Kaufman. Discusses and implements a wide range of
AI problem-solving techniques and concepts, including depth-first
search, breadth-first search, best-first search, alpha-beta minimax,
forward chaining, production systems, reasoning with uncertainty,
and STRIPS.



Prolog Environments

Several Prolog environments are available, and probably the best idea
is simply to google what’s available. But we list here four ofthe more
widely used systems.

• SWI-Prolog
A Free Software Prolog environment, licensed under the Lesser
GNU public license. This popular interpreter was developedby Jan
Wielemaker.
http://www.swi-prolog.org/

• SICStus Prolog
Industrial strength Prolog environment from the Swedish Institute
of Computer Science.
http://www.sics.se/sicstus/

• YAP Prolog
A Prolog compiler developed at the Universidade do Porto and
Universidade Federa do Rio de Janeiro. Free for use in academic
environments.
http://www.ncc.up.pt/∼vsc/Yap/

• Ciao Prolog
Another Prolog environment available under the GNU public license,
developed at the Universidad Politécnica de Madrid.
http://clip.dia.fi.upm.es/Software/Ciao/
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Predicate Index

Symbols
,/2, 6
./2, 164
;/2, 7
</2, 97
=../2, 172
=/2, 24
=:=/2, 97
=</2, 97
==/2, 160
=\=/2, 97
>/2, 97
>=/2, 97
\=/2, 42
\==/2, 161

A
append/3, 106
arg/3, 172
assert/1, 204
asserta/1, 207
assertz/1, 207
at end of stream/1, 225
atom/1, 167
atom codes/2, 173, 225
atomic/1, 167

B
bagof/3, 211

C
’C’/3, 130, 136
close/1, 223

D
display/1, 179

E
ensure loaded/1, 219

F
findall/3, 209
float/1, 167
functor/3, 170

G
get code/2, 225

I
integer/1, 167
is/2, 90

L
listing/0, 17

M
max/3, 192
member/2, 76
module/2, 221

N
nl/0, 182, 220
nl/1, 223
nonvar/1, 167
notrace/0, 45
number/1, 167
number codes/2, 174
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O
op/3, 176
open/3, 223, 224

R
read/2, 224
retract/1, 204
retractall/3, 208

S
setof/3, 213

T
tab/1, 182, 220
trace/0, 43

U
unify with occurs check/2, 31
use module/1, 222
use module/2, 222

V
var/1, 167

W
write/1, 180
write/2, 223












