This repository was archived by the owner on Apr 17, 2023. It is now read-only.
forked from KaiyangZhou/deep-person-reid
-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathdefault_config.py
565 lines (493 loc) · 21.2 KB
/
default_config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
# Copyright (c) 2018-2021 Kaiyang Zhou
# SPDX-License-Identifier: MIT
#
# Copyright (C) 2020-2021 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
#
import os
import yaml
from yacs.config import CfgNode as CN
# pylint: disable=protected-access,too-many-statements,unspecified-encoding
def get_default_config():
cfg = CN()
# special slot for inheritance implementation
# -- see the function merge_from_files_with_base below
cfg._base_ = ''
# lr finder
cfg.lr_finder = CN()
cfg.lr_finder.enable = False
cfg.lr_finder.mode = 'fast_ai'
cfg.lr_finder.max_lr = 0.03
cfg.lr_finder.min_lr = 0.004
cfg.lr_finder.step = None
cfg.lr_finder.num_epochs = 3
cfg.lr_finder.epochs_warmup = 1
cfg.lr_finder.stop_after = False
cfg.lr_finder.path_to_savefig = ''
cfg.lr_finder.smooth_f = 0.01
cfg.lr_finder.n_trials = 100
# model
cfg.model = CN()
cfg.model.name = 'resnet50'
cfg.model.pretrained = False
cfg.model.download_weights = True
cfg.model.load_weights = '' # path to snapshot to load weights
cfg.model.save_all_chkpts = True
cfg.model.resume = '' # path to checkpoint for resume training
cfg.model.dropout_backbone = CN()
cfg.model.dropout_backbone.p = 0.0
cfg.model.dropout_backbone.mu = 0.1
cfg.model.dropout_backbone.sigma = 0.03
cfg.model.dropout_backbone.kernel = 3
cfg.model.dropout_backbone.temperature = 0.2
cfg.model.dropout_backbone.dist = 'none'
cfg.model.dropout_cls = CN()
cfg.model.dropout_cls.p = 0.0
cfg.model.dropout_cls.mu = 0.1
cfg.model.dropout_cls.sigma = 0.03
cfg.model.dropout_cls.kernel = 3
cfg.model.dropout_cls.temperature = 0.2
cfg.model.dropout_cls.dist = 'none'
cfg.model.feature_dim = 512 # embedding size
cfg.model.bn_eval = False
cfg.model.bn_frozen = False
cfg.model.pooling_type = 'avg'
cfg.model.IN_first = False
cfg.model.IN_conv1 = False
cfg.model.type = 'classification'
cfg.model.self_challenging_cfg = CN()
cfg.model.self_challenging_cfg.enable = False
cfg.model.self_challenging_cfg.drop_p = 0.33
cfg.model.self_challenging_cfg.drop_batch_p = 0.33
cfg.model.transformer = CN()
cfg.model.transformer.dropout = 0.1
cfg.model.transformer.nheads = 4
cfg.model.transformer.num_encoder_layers = 1
cfg.model.transformer.num_decoder_layers = 2
cfg.model.transformer.pre_norm = False
cfg.model.transformer.rm_self_attn_dec = True
cfg.model.transformer.rm_first_self_attn = True
cfg.model.gcn = CN()
cfg.model.gcn.rho = 0.25
cfg.model.gcn.hidden_dim_scale = 1.
cfg.model.gcn.thau = 0.4
cfg.model.gcn.layer_type = 'gcn'
cfg.model.gcn.word_emb_path = ''
cfg.model.gcn.adj_matrix_path = ''
cfg.model.gcn.word_model_path = ''
cfg.model.export_onnx_opset = 9
# mutual learning, auxiliary model
cfg.mutual_learning = CN()
cfg.mutual_learning.aux_configs = []
# data
cfg.data = CN()
cfg.data.root = 'data'
cfg.data.workers = 4 # number of data loading workers
cfg.data.split_id = 0 # Split index
cfg.data.height = 256 # image height
cfg.data.width = 128 # image width
cfg.data.combineall = False # combine train, query and gallery for training
cfg.data.norm_mean = [0.485, 0.456, 0.406] # default is imagenet mean
cfg.data.norm_std = [0.229, 0.224, 0.225] # default is imagenet std
cfg.data.save_dir = 'log' # path to save log
cfg.data.tb_log_dir = '' # path to save tensorboard log. If empty, log will be saved to data.save_dir
cfg.data.min_samples_per_id = 1
cfg.data.num_sampled_packages = 1
# custom_datasets
cfg.custom_datasets = CN() # this node contains information about custom classification datasets
cfg.custom_datasets.roots = [] # a list of root folders in case of ImagesFolder fromat
# or list of annotation files with paths relative to the list's parent folder
cfg.custom_datasets.types = [] # a list of types (classification or classification_image_folder)
cfg.custom_datasets.names = [] # aliases for custom datasets that can be used in the data section. Should be unique
# sampler
cfg.sampler = CN()
cfg.sampler.train_sampler = 'RandomSampler'
# train
cfg.train = CN()
cfg.train.optim = 'adam'
cfg.train.base_optim = 'sgd'
cfg.train.lr = 0.0003
cfg.train.weight_decay = 5e-4
cfg.train.max_epoch = 60
cfg.train.start_epoch = 0
cfg.train.batch_size = 32
cfg.train.correct_batch_size = False
cfg.train.early_stopping = False # switch on exit on metric plataeu method
cfg.train.train_patience = 10 # define how much epochs to wait after scheduler process
cfg.train.open_layers = ['classifier'] # layers for training while keeping others frozen
cfg.train.staged_lr = False # set different lr to different layers
cfg.train.new_layers = ['classifier'] # newly added layers with default lr
cfg.train.base_lr_mult = 0.1 # learning rate multiplier for base layers
cfg.train.lr_scheduler = 'single_step'
cfg.train.target_metric = 'train_loss' # define which metric to use with reduce_on_plateau scheduler.
# Two possible variants are available: 'test_acc' and 'train_loss'
cfg.train.base_scheduler = ''
cfg.train.stepsize = [20] # stepsize to decay learning rate
cfg.train.gamma = 0.1 # learning rate decay multiplier
cfg.train.first_cycle_steps = 5
cfg.train.cycle_mult = 1.
cfg.train.min_lr = 1e-5
cfg.train.max_lr = 0.1
cfg.train.lr_decay_factor = 100
cfg.train.pct_start = 0.3
cfg.train.fixbase_epoch = 0
cfg.train.nbd = False
cfg.train.patience = 5 # define how much epochs to wait for reduce on plateau
cfg.train.multiplier = 10
cfg.train.print_freq = 20 # print frequency
cfg.train.seed = 5 # random seed
cfg.train.deterministic = False # define to use cuda.deterministic
cfg.train.warmup = 5 # After fixbase_epoch
cfg.train.clip_grad = 0.
cfg.train.ema = CN()
cfg.train.ema.enable = False
cfg.train.ema.ema_decay = 0.9999
cfg.train.sam = CN()
cfg.train.sam.rho = 0.05
cfg.train.sam.adaptive = False
cfg.train.mix_precision = False
# optimizer
cfg.sgd = CN()
cfg.sgd.momentum = 0.9 # momentum factor for sgd and rmsprop
cfg.sgd.dampening = 0. # dampening for momentum
cfg.sgd.nesterov = False # Nesterov momentum
cfg.rmsprop = CN()
cfg.rmsprop.alpha = 0.99 # smoothing constant
cfg.adam = CN()
cfg.adam.beta1 = 0.9 # exponential decay rate for first moment
cfg.adam.beta2 = 0.999 # exponential decay rate for second moment
# loss
cfg.loss = CN()
cfg.loss.name = 'softmax'
cfg.loss.softmax = CN()
cfg.loss.softmax.label_smooth = 0. # use label smoothing regularizer
cfg.loss.softmax.margin_type = 'cos'
cfg.loss.softmax.augmentations = CN()
cfg.loss.softmax.augmentations.aug_type = '' # use advanced augmentations like fmix, cutmix and mixup
cfg.loss.softmax.augmentations.alpha = 1.0
cfg.loss.softmax.augmentations.aug_prob = 1.0
cfg.loss.softmax.augmentations.fmix = CN()
cfg.loss.softmax.augmentations.fmix.decay_power = 3
cfg.loss.softmax.conf_penalty = 0.0
cfg.loss.softmax.pr_product = False
cfg.loss.softmax.m = 0.35
cfg.loss.softmax.s = 30.
cfg.loss.softmax.compute_s = False
cfg.loss.softmax.symmetric_ce = False
cfg.loss.asl = CN()
cfg.loss.asl.gamma_pos = 0.
cfg.loss.asl.gamma_neg = 0.
cfg.loss.asl.p_m = 0.05
cfg.loss.am_binary = CN()
cfg.loss.am_binary.amb_k = 0.7
cfg.loss.am_binary.amb_t = 1.
# mixing loss
cfg.mixing_loss = CN()
cfg.mixing_loss.enable = False
cfg.mixing_loss.weight = 1.0
# test
cfg.test = CN()
cfg.test.batch_size = 100
cfg.test.topk = [1, 5, 10, 20]
cfg.test.evaluate = False # test only
cfg.test.eval_freq = -1 # evaluation frequency (-1 means to only test after training)
cfg.test.start_eval = 0 # start to evaluate after a specific epoch
cfg.test.test_before_train = False
cfg.test.save_initial_metric = False
cfg.test.estimate_multilabel_thresholds = False
# Augmentations
cfg.data.transforms = CN()
cfg.data.transforms.random_flip = CN()
cfg.data.transforms.random_flip.enable = True
cfg.data.transforms.random_flip.p = 0.5
cfg.data.transforms.random_crop = CN()
cfg.data.transforms.random_crop.enable = False
cfg.data.transforms.random_crop.p = 0.5
cfg.data.transforms.random_crop.scale = 0.9
cfg.data.transforms.random_crop.margin = 0
cfg.data.transforms.random_crop.static = False
cfg.data.transforms.random_crop.align_ar = False
cfg.data.transforms.random_crop.align_center = False
cfg.data.transforms.crop_pad = CN()
cfg.data.transforms.crop_pad.enable = False
cfg.data.transforms.center_crop = CN()
cfg.data.transforms.center_crop.enable = False
cfg.data.transforms.center_crop.margin = 0
cfg.data.transforms.center_crop.test_only = False
cfg.data.transforms.random_gray_scale = CN()
cfg.data.transforms.random_gray_scale.enable = False
cfg.data.transforms.random_gray_scale.p = 0.5
cfg.data.transforms.force_gray_scale = CN()
cfg.data.transforms.force_gray_scale.enable = False
cfg.data.transforms.random_negative = CN()
cfg.data.transforms.random_negative.enable = False
cfg.data.transforms.random_negative.p = 0.5
cfg.data.transforms.posterize = CN()
cfg.data.transforms.posterize.enable = False
cfg.data.transforms.posterize.p = 0.5
cfg.data.transforms.posterize.bits = 1
cfg.data.transforms.equalize = CN()
cfg.data.transforms.equalize.enable = False
cfg.data.transforms.equalize.p = 0.5
cfg.data.transforms.random_perspective = CN()
cfg.data.transforms.random_perspective.enable = False
cfg.data.transforms.random_perspective.p = 0.5
cfg.data.transforms.random_perspective.distortion_scale = 0.5
cfg.data.transforms.color_jitter = CN()
cfg.data.transforms.color_jitter.enable = False
cfg.data.transforms.color_jitter.p = 0.5
cfg.data.transforms.color_jitter.brightness = 0.2
cfg.data.transforms.color_jitter.contrast = 0.2
cfg.data.transforms.color_jitter.saturation = 0.1
cfg.data.transforms.color_jitter.hue = 0.1
cfg.data.transforms.random_erase = CN()
cfg.data.transforms.random_erase.enable = False
cfg.data.transforms.random_erase.p = 0.5
cfg.data.transforms.random_erase.sl = 0.2
cfg.data.transforms.random_erase.sh = 0.4
cfg.data.transforms.random_erase.rl = 0.3
cfg.data.transforms.random_erase.rh = 3.3
cfg.data.transforms.random_erase.fill_color = (125.307, 122.961, 113.8575)
cfg.data.transforms.random_erase.norm_image = True
cfg.data.transforms.coarse_dropout = CN()
cfg.data.transforms.coarse_dropout.enable = False
cfg.data.transforms.coarse_dropout.p = 0.5
cfg.data.transforms.coarse_dropout.max_height = 8
cfg.data.transforms.coarse_dropout.max_width = 8
cfg.data.transforms.coarse_dropout.max_holes = 8
cfg.data.transforms.coarse_dropout.min_holes = None
cfg.data.transforms.coarse_dropout.min_height = None
cfg.data.transforms.coarse_dropout.fill_value = 0
cfg.data.transforms.coarse_dropout.mask_fill_value = None
cfg.data.transforms.random_rotate = CN()
cfg.data.transforms.random_rotate.enable = False
cfg.data.transforms.random_rotate.p = 0.5
cfg.data.transforms.random_rotate.angle = (-5, 5)
cfg.data.transforms.random_rotate.values = (0, )
cfg.data.transforms.random_blur = CN()
cfg.data.transforms.random_blur.enable = False
cfg.data.transforms.random_blur.p = 0.5
cfg.data.transforms.random_blur.k = 5
cfg.data.transforms.random_noise = CN()
cfg.data.transforms.random_noise.enable = False
cfg.data.transforms.random_noise.p = 0.2
cfg.data.transforms.random_noise.sigma = 0.05
cfg.data.transforms.random_noise.grayscale = False
cfg.data.transforms.augmix = CN()
cfg.data.transforms.augmix.enable = False
cfg.data.transforms.augmix.cfg_str = "augmix-m5-w3"
cfg.data.transforms.augmix.grey_imgs = False
cfg.data.transforms.randaugment = CN()
cfg.data.transforms.randaugment.enable = False
cfg.data.transforms.randaugment.p = 1.
cfg.data.transforms.cutout = CN()
cfg.data.transforms.cutout.enable = False
cfg.data.transforms.cutout.p = 0.5
cfg.data.transforms.cutout.cutout_factor=0.3
cfg.data.transforms.cutout.fill_color='random'
cfg.data.transforms.random_figures = CN()
cfg.data.transforms.random_figures.enable = False
cfg.data.transforms.random_figures.p = 0.5
cfg.data.transforms.random_figures.random_color = True
cfg.data.transforms.random_figures.always_single_figure = False
cfg.data.transforms.random_figures.thicknesses = (1, 6)
cfg.data.transforms.random_figures.circle_radiuses = (5, 64)
cfg.data.transforms.random_figures.figure_prob = 0.5
cfg.data.transforms.random_figures.figures = ['line', 'rectangle', 'circle']
cfg.data.transforms.test = CN()
cfg.data.transforms.test.resize_first = False
cfg.data.transforms.test.resize_scale = 1.0
# NNCF part
cfg.nncf = CN()
# coefficient to decrease LR for NNCF training
# (the original initial LR for training will be read from the checkpoint's metainfo)
cfg.nncf.coeff_decrease_lr_for_nncf = 0.035
# path to a json file with NNCF config
cfg.nncf.nncf_config_path = ''
# SC integration part
cfg.sc_integration = CN()
cfg.sc_integration.lr_scale = 1.
cfg.sc_integration.epoch_scale = 1.
return cfg
def merge_from_files_with_base(cfg, cfg_path):
def _get_list_of_files(cur_path, set_of_files=None):
if not (cur_path.lower().endswith('.yml') or cur_path.lower().endswith('.yaml')):
raise RuntimeError(f'Wrong extension of config file {cur_path}')
if set_of_files is None:
set_of_files = {cur_path}
elif cur_path in set_of_files:
raise RuntimeError(f'Cyclic inheritance of config files found in {cur_path}')
set_of_files.add(cur_path)
if not os.path.isfile(cur_path):
raise FileNotFoundError(f'Config file {cur_path} not found')
with open(cur_path) as f:
d = yaml.safe_load(f)
base = d.get('_base_')
if not base:
return [cur_path]
if not isinstance(base, (list, str)):
raise RuntimeError(f'Wrong type of field "_base_" in config {cur_path}')
if isinstance(base, list) and len(base) > 1:
raise NotImplementedError(f'Multiple inheritance of configs is not implemented. '
f'Please, fix the config {cur_path}')
if isinstance(base, list):
base = base[0]
if not isinstance(base, str):
raise RuntimeError(f'Wrong type of the element in the field "_base_" in config {cur_path}')
cur_list_files = _get_list_of_files(base, set_of_files)
cur_list_files += [cur_path]
return cur_list_files
cur_list_files = _get_list_of_files(cfg_path)
assert len(cur_list_files) >= 1
print('Begin merging of config files with inheritance')
for cur_path in cur_list_files:
print(f' merging config file {cur_path}')
cfg.merge_from_file(cur_path)
print('End merging of config files with inheritance')
def imagedata_kwargs(cfg):
return {
'root': cfg.data.root,
'height': cfg.data.height,
'width': cfg.data.width,
'transforms': cfg.data.transforms,
'norm_mean': cfg.data.norm_mean,
'norm_std': cfg.data.norm_std,
'use_gpu': cfg.use_gpu,
'batch_size_train': cfg.train.batch_size,
'batch_size_test': cfg.test.batch_size,
'correct_batch_size': cfg.train.correct_batch_size,
'workers': cfg.data.workers,
'train_sampler': cfg.sampler.train_sampler,
'custom_dataset_roots': cfg.custom_datasets.roots,
'custom_dataset_types': cfg.custom_datasets.types,
}
def optimizer_kwargs(cfg):
return {
'optim': cfg.train.optim,
'base_optim': cfg.train.base_optim,
'lr': cfg.train.lr,
'weight_decay': cfg.train.weight_decay,
'momentum': cfg.sgd.momentum,
'sgd_dampening': cfg.sgd.dampening,
'sgd_nesterov': cfg.sgd.nesterov,
'rmsprop_alpha': cfg.rmsprop.alpha,
'adam_beta1': cfg.adam.beta1,
'adam_beta2': cfg.adam.beta2,
'staged_lr': cfg.train.staged_lr,
'new_layers': cfg.train.new_layers,
'base_lr_mult': cfg.train.base_lr_mult,
'nbd': cfg.train.nbd,
'lr_finder': cfg.lr_finder.enable,
'sam_rho': cfg.train.sam.rho,
'sam_adaptive': cfg.train.sam.adaptive
}
def lr_scheduler_kwargs(cfg):
return {
'lr_scheduler': cfg.train.lr_scheduler,
'base_scheduler': cfg.train.base_scheduler,
'stepsize': cfg.train.stepsize,
'gamma': cfg.train.gamma,
'max_epoch': cfg.train.max_epoch,
'warmup': cfg.train.warmup,
'multiplier': cfg.train.multiplier,
'first_cycle_steps': cfg.train.first_cycle_steps,
'cycle_mult': cfg.train.cycle_mult,
'min_lr': cfg.train.min_lr,
'max_lr': cfg.train.max_lr,
'patience': cfg.train.patience,
'pct_start' : cfg.train.pct_start,
'lr_decay_factor': cfg.train.lr_decay_factor,
}
def model_kwargs(cfg, num_classes):
if isinstance(num_classes, (tuple, list)) and len(num_classes) == 1:
num_classes = num_classes[0]
return {
'name': cfg.model.name,
'num_classes': num_classes,
'loss': cfg.loss.name,
'compute_scale': cfg.loss.softmax.compute_s,
'scale': cfg.loss.softmax.s,
'pretrained': cfg.model.pretrained,
'lr_finder': cfg.lr_finder,
'download_weights': cfg.model.download_weights,
'use_gpu': cfg.use_gpu,
'dropout_cfg': cfg.model.dropout_backbone,
'dropout_cls': cfg.model.dropout_cls,
'feature_dim': cfg.model.feature_dim,
'mix_precision': cfg.train.mix_precision,
'pooling_type': cfg.model.pooling_type,
'input_size': (cfg.data.height, cfg.data.width),
'IN_first': cfg.model.IN_first,
'IN_conv1': cfg.model.IN_conv1,
'bn_eval': cfg.model.bn_eval,
'bn_frozen': cfg.model.bn_frozen,
'model_type': cfg.model.type,
'self_challenging_cfg': cfg.model.self_challenging_cfg,
'similarity_adjustment': cfg.loss.am_binary.amb_t > 1.,
'amb_t' : cfg.loss.am_binary.amb_t,
'dropout': cfg.model.transformer.dropout,
'nheads': cfg.model.transformer.nheads,
'num_encoder_layers': cfg.model.transformer.num_encoder_layers,
'num_decoder_layers': cfg.model.transformer.num_decoder_layers,
'pre_norm': cfg.model.transformer.pre_norm,
'rm_self_attn_dec': cfg.model.transformer.rm_self_attn_dec,
'rm_first_self_attn': cfg.model.transformer.rm_first_self_attn,
'thau': cfg.model.gcn.thau,
'rho_gcn': cfg.model.gcn.rho,
'hidden_dim_scale': cfg.model.gcn.hidden_dim_scale,
'layer_type': cfg.model.gcn.layer_type,
'adj_matrix_path': cfg.model.gcn.adj_matrix_path,
'word_emb_path': cfg.model.gcn.word_emb_path
}
def engine_run_kwargs(cfg):
return {
'save_dir': cfg.data.save_dir,
'tb_log_dir': cfg.data.tb_log_dir,
'max_epoch': cfg.train.max_epoch,
'start_epoch': cfg.train.start_epoch,
'fixbase_epoch': cfg.train.fixbase_epoch,
'open_layers': cfg.train.open_layers,
'start_eval': cfg.test.start_eval,
'eval_freq': cfg.test.eval_freq,
'print_freq': cfg.train.print_freq,
'initial_seed': cfg.train.seed
}
def engine_test_kwargs(cfg):
return {
'save_dir': cfg.data.save_dir,
'test_only': cfg.test.evaluate,
}
def lr_finder_run_kwargs(cfg):
return {
'mode': cfg.lr_finder.mode,
'epochs_warmup': cfg.lr_finder.epochs_warmup,
'max_lr': cfg.lr_finder.max_lr,
'min_lr': cfg.lr_finder.min_lr,
'step': cfg.lr_finder.step,
'num_epochs': cfg.lr_finder.num_epochs,
'path_to_savefig': cfg.lr_finder.path_to_savefig,
'seed': cfg.train.seed,
'smooth_f': cfg.lr_finder.smooth_f,
'n_trials': cfg.lr_finder.n_trials
}
def transforms(cfg):
return cfg.data.transforms
def augmentation_kwargs(cfg):
return {
'random_flip': cfg.data.transforms.random_flip,
'center_crop': cfg.data.transforms.center_crop,
'random_crop': cfg.data.transforms.random_crop,
'random_gray_scale': cfg.data.transforms.random_gray_scale,
'force_gray_scale': cfg.data.transforms.force_gray_scale,
'random_perspective': cfg.data.transforms.random_perspective,
'color_jitter': cfg.data.transforms.color_jitter,
'random_erase': cfg.data.transforms.random_erase,
'random_rotate': cfg.data.transforms.random_rotate,
'random_figures': cfg.data.transforms.random_figures,
'random_grid': cfg.data.transforms.random_grid,
'random_negative': cfg.data.transforms.random_negative,
'coarse_dropout': cfg.data.transforms.coarse_dropout,
'equalize': cfg.data.transforms.equalize,
'posterize': cfg.data.transforms.posterize,
'augmix': cfg.data.transforms.augmix
}