-
Notifications
You must be signed in to change notification settings - Fork 277
/
Copy pathretrieval_tool.py
222 lines (194 loc) · 8.66 KB
/
retrieval_tool.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import argparse
import asyncio
import os
from typing import Union
from comps import MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceRoleType, ServiceType
from comps.cores.proto.api_protocol import ChatCompletionRequest, EmbeddingRequest
from comps.cores.proto.docarray import LLMParams, LLMParamsDoc, RerankedDoc, RerankerParms, RetrieverParms, TextDoc
from fastapi import Request
MEGA_SERVICE_PORT = os.getenv("MEGA_SERVICE_PORT", 8889)
EMBEDDING_SERVICE_HOST_IP = os.getenv("EMBEDDING_SERVICE_HOST_IP", "0.0.0.0")
EMBEDDING_SERVICE_PORT = os.getenv("EMBEDDING_SERVICE_PORT", 6000)
RETRIEVER_SERVICE_HOST_IP = os.getenv("RETRIEVER_SERVICE_HOST_IP", "0.0.0.0")
RETRIEVER_SERVICE_PORT = os.getenv("RETRIEVER_SERVICE_PORT", 7000)
RERANK_SERVICE_HOST_IP = os.getenv("RERANK_SERVICE_HOST_IP", "0.0.0.0")
RERANK_SERVICE_PORT = os.getenv("RERANK_SERVICE_PORT", 8000)
def align_inputs(self, inputs, cur_node, runtime_graph, llm_parameters_dict, **kwargs):
print(f"*** Inputs to {cur_node}:\n{inputs}")
print("--" * 50)
for key, value in kwargs.items():
print(f"{key}: {value}")
if self.services[cur_node].service_type == ServiceType.EMBEDDING:
inputs["input"] = inputs["text"]
del inputs["text"]
elif self.services[cur_node].service_type == ServiceType.RETRIEVER:
# input is EmbedDoc
"""Class EmbedDoc(BaseDoc):
text: Union[str, List[str]]
embedding: Union[conlist(float, min_length=0), List[conlist(float, min_length=0)]]
search_type: str = "similarity"
k: int = 4
distance_threshold: Optional[float] = None
fetch_k: int = 20
lambda_mult: float = 0.5
score_threshold: float = 0.2
constraints: Optional[Union[Dict[str, Any], List[Dict[str, Any]], None]] = None
index_name: Optional[str] = None
"""
# prepare the retriever params
retriever_parameters = kwargs.get("retriever_parameters", None)
if retriever_parameters:
inputs.update(retriever_parameters.dict())
elif self.services[cur_node].service_type == ServiceType.RERANK:
# input is SearchedDoc
"""Class SearchedDoc(BaseDoc):
retrieved_docs: DocList[TextDoc]
initial_query: str
top_n: int = 1
"""
# prepare the reranker params
reranker_parameters = kwargs.get("reranker_parameters", None)
if reranker_parameters:
inputs.update(reranker_parameters.dict())
print(f"*** Formatted Inputs to {cur_node}:\n{inputs}")
print("--" * 50)
return inputs
def align_outputs(self, data, cur_node, inputs, runtime_graph, llm_parameters_dict, **kwargs):
print(f"*** Direct Outputs from {cur_node}:\n{data}")
print("--" * 50)
if self.services[cur_node].service_type == ServiceType.EMBEDDING:
# direct output from Embedding microservice is EmbeddingResponse
"""
class EmbeddingResponse(BaseModel):
object: str = "list"
model: Optional[str] = None
data: List[EmbeddingResponseData]
usage: Optional[UsageInfo] = None
class EmbeddingResponseData(BaseModel):
index: int
object: str = "embedding"
embedding: Union[List[float], str]
"""
# turn it into EmbedDoc
assert isinstance(data["data"], list)
next_data = {"text": inputs["input"], "embedding": data["data"][0]["embedding"]} # EmbedDoc
else:
next_data = data
print(f"*** Formatted Output from {cur_node} for next node:\n", next_data)
print("--" * 50)
return next_data
class RetrievalToolService:
def __init__(self, host="0.0.0.0", port=8000):
self.host = host
self.port = port
ServiceOrchestrator.align_inputs = align_inputs
ServiceOrchestrator.align_outputs = align_outputs
self.megaservice = ServiceOrchestrator()
self.endpoint = str(MegaServiceEndpoint.RETRIEVALTOOL)
def add_remote_service(self):
embedding = MicroService(
name="embedding",
host=EMBEDDING_SERVICE_HOST_IP,
port=EMBEDDING_SERVICE_PORT,
endpoint="/v1/embeddings",
use_remote_service=True,
service_type=ServiceType.EMBEDDING,
)
retriever = MicroService(
name="retriever",
host=RETRIEVER_SERVICE_HOST_IP,
port=RETRIEVER_SERVICE_PORT,
endpoint="/v1/retrieval",
use_remote_service=True,
service_type=ServiceType.RETRIEVER,
)
rerank = MicroService(
name="rerank",
host=RERANK_SERVICE_HOST_IP,
port=RERANK_SERVICE_PORT,
endpoint="/v1/reranking",
use_remote_service=True,
service_type=ServiceType.RERANK,
)
self.megaservice.add(embedding).add(retriever).add(rerank)
self.megaservice.flow_to(embedding, retriever)
self.megaservice.flow_to(retriever, rerank)
async def handle_request(self, request: Request):
data = await request.json()
chat_request = ChatCompletionRequest.parse_obj(data)
prompt = chat_request.messages
# dummy llm params
parameters = LLMParams(
max_tokens=chat_request.max_tokens if chat_request.max_tokens else 1024,
top_k=chat_request.top_k if chat_request.top_k else 10,
top_p=chat_request.top_p if chat_request.top_p else 0.95,
temperature=chat_request.temperature if chat_request.temperature else 0.01,
frequency_penalty=chat_request.frequency_penalty if chat_request.frequency_penalty else 0.0,
presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0,
repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03,
chat_template=chat_request.chat_template if chat_request.chat_template else None,
model=chat_request.model if chat_request.model else None,
)
retriever_parameters = RetrieverParms(
search_type=chat_request.search_type if chat_request.search_type else "similarity",
k=chat_request.k if chat_request.k else 4,
distance_threshold=chat_request.distance_threshold if chat_request.distance_threshold else None,
fetch_k=chat_request.fetch_k if chat_request.fetch_k else 20,
lambda_mult=chat_request.lambda_mult if chat_request.lambda_mult else 0.5,
score_threshold=chat_request.score_threshold if chat_request.score_threshold else 0.2,
)
reranker_parameters = RerankerParms(
top_n=chat_request.top_n if chat_request.top_n else 1,
)
result_dict, runtime_graph = await self.megaservice.schedule(
initial_inputs={"text": prompt},
llm_parameters=parameters,
retriever_parameters=retriever_parameters,
reranker_parameters=reranker_parameters,
)
last_node = runtime_graph.all_leaves()[-1]
response = result_dict[last_node]
return response
def start(self):
self.service = MicroService(
self.__class__.__name__,
service_role=ServiceRoleType.MEGASERVICE,
host=self.host,
port=self.port,
endpoint=self.endpoint,
input_datatype=Union[TextDoc, EmbeddingRequest, ChatCompletionRequest],
output_datatype=Union[RerankedDoc, LLMParamsDoc],
)
self.service.add_route(self.endpoint, self.handle_request, methods=["POST"])
self.service.start()
def add_remote_service_without_rerank(self):
embedding = MicroService(
name="embedding",
host=EMBEDDING_SERVICE_HOST_IP,
port=EMBEDDING_SERVICE_PORT,
endpoint="/v1/embeddings",
use_remote_service=True,
service_type=ServiceType.EMBEDDING,
)
retriever = MicroService(
name="retriever",
host=RETRIEVER_SERVICE_HOST_IP,
port=RETRIEVER_SERVICE_PORT,
endpoint="/v1/retrieval",
use_remote_service=True,
service_type=ServiceType.RETRIEVER,
)
self.megaservice.add(embedding).add(retriever)
self.megaservice.flow_to(embedding, retriever)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--without-rerank", action="store_true")
args = parser.parse_args()
chatqna = RetrievalToolService(port=MEGA_SERVICE_PORT)
if args.without_rerank:
chatqna.add_remote_service_without_rerank()
else:
chatqna.add_remote_service()
chatqna.start()