Skip to content

Commit d2f4068

Browse files
authored
Change PyMC3 to PyMC due to the name change of the project
1 parent bb0098c commit d2f4068

File tree

4 files changed

+8
-8
lines changed

4 files changed

+8
-8
lines changed

content/en/tabcontents.yaml

+2-2
Original file line numberDiff line numberDiff line change
@@ -173,7 +173,7 @@ params:
173173
- url: https://pystan.readthedocs.io/en/latest/
174174
label: PyStan
175175
- url: https://docs.pymc.io/
176-
label: PyMC3
176+
label: PyMC
177177
- url: https://arviz-devs.github.io/arviz/
178178
label: ArviZ
179179
- url: https://emcee.readthedocs.io/
@@ -250,7 +250,7 @@ params:
250250
examples:
251251
- text: "<b>Extract, Transform, Load: </b>[Pandas](https://pandas.pydata.org), [Intake](https://intake.readthedocs.io), [PyJanitor](https://pyjanitor-devs.github.io/pyjanitor/)"
252252
- text: "<b>Exploratory analysis: </b>[Jupyter](https://jupyter.org), [Seaborn](https://seaborn.pydata.org), [Matplotlib](https://matplotlib.org), [Altair](https://altair-viz.github.io)"
253-
- text: "<b>Model and evaluate: </b>[scikit-learn](https://scikit-learn.org), [statsmodels](https://www.statsmodels.org/stable/index.html), [PyMC3](https://docs.pymc.io), [spaCy](https://spacy.io)"
253+
- text: "<b>Model and evaluate: </b>[scikit-learn](https://scikit-learn.org), [statsmodels](https://www.statsmodels.org/stable/index.html), [PyMC](https://docs.pymc.io), [spaCy](https://spacy.io)"
254254
- text: "<b>Report in a dashboard: </b>[Dash](https://plotly.com/dash), [Panel](https://panel.holoviz.org), [Voila](https://voila.readthedocs.io/)"
255255

256256
content:

content/es/tabcontents.yaml

+2-2
Original file line numberDiff line numberDiff line change
@@ -168,7 +168,7 @@ params:
168168
- url: https://pystan.readthedocs.io/en/latest/
169169
label: PyStan
170170
- url: https://docs.pymc.io/
171-
label: PyMC3
171+
label: PyMC
172172
- url: https://arviz-devs.github.io/arviz/
173173
label: ArviZ
174174
- url: https://emcee.readthedocs.io/
@@ -240,7 +240,7 @@ params:
240240
examples:
241241
- text: "<b>Extraer, Transformar, Cargar: </b>[Pandas](https://pandas.pydata.org), [Intake](https://intake.readthedocs.io), [PyJanitor](https://pyjanitor.readthedocs.io/)"
242242
- text: "<b>Análisis Exploratorio: </b>[Jupyter](https://jupyter.org), [Seaborn](https://seaborn.pydata.org), [Matplotlib](https://matplotlib.org), [Altair](https://altair-viz.github.io)"
243-
- text: "<b>Modelado y evaluación: </b>[scikit-learn](https://scikit-learn.org), [statsmodels](https://www.statsmodels.org/stable/index.html), [PyMC3](https://docs.pymc.io), [spaCy](https://spacy.io)"
243+
- text: "<b>Modelado y evaluación: </b>[scikit-learn](https://scikit-learn.org), [statsmodels](https://www.statsmodels.org/stable/index.html), [PyMC](https://docs.pymc.io), [spaCy](https://spacy.io)"
244244
- text: "<b>Informes en un panel de control: </b>[Dash](https://plotly.com/dash), [Panel](https://panel.holoviz.org), [Voila](https://github.com/voila-dashboards/voila)"
245245
content:
246246
- text: Para grandes volúmenes de datos, [Dask](https://dask.org) y [Ray](https://ray.io/) están diseñados para escalarse. Las implementaciones estables se basan en el versionado de datos ([DVC](https://dvc.org)), rastreo de experimentos ([MLFlow](https://mlflow.org)), y automatización del flujo de trabajo ([Airflow](https://airflow.apache.org), [Dagster](https://dagster.io) y [Prefect](https://www.prefect.io)).

content/ja/tabcontents.yaml

+2-2
Original file line numberDiff line numberDiff line change
@@ -224,7 +224,7 @@ params:
224224
label: PyStan
225225
-
226226
url: https://docs.pymc.io/
227-
label: PyMC3
227+
label: PyMC
228228
-
229229
url: https://arviz-devs.github.io/arviz/
230230
label: ArviZ
@@ -326,7 +326,7 @@ params:
326326
-
327327
text: "<b>探索的解析: </b>[Jupyter](https://jupyter.org), [Seaborn](https://seaborn.pydata.org), [Matplotlib](https://matplotlib.org), [Altair](https://altair-viz.github.io)"
328328
-
329-
text: "<b>モデリングと評価: </b>[scikit-learn](https://scikit-learn.org), [statsmodels](https://www.statsmodels.org/stable/index.html), [PyMC3](https://docs.pymc.io), [spaCy](https://spacy.io)"
329+
text: "<b>モデリングと評価: </b>[scikit-learn](https://scikit-learn.org), [statsmodels](https://www.statsmodels.org/stable/index.html), [PyMC](https://docs.pymc.io), [spaCy](https://spacy.io)"
330330
-
331331
text: "<b>ダッシュボードでのレポート: </b>[Dash](https://plotly.com/dash), [Panel](https://panel.holoviz.org), [Voila](https://github.com/voila-dashboards/voila)"
332332
content:

content/pt/tabcontents.yaml

+2-2
Original file line numberDiff line numberDiff line change
@@ -173,7 +173,7 @@ params:
173173
- url: https://pystan.readthedocs.io/en/latest/
174174
label: PyStan
175175
- url: https://docs.pymc.io/
176-
label: PyMC3
176+
label: PyMC
177177
- url: https://arviz-devs.github.io/arviz/
178178
label: ArviZ
179179
- url: https://emcee.readthedocs.io/
@@ -245,7 +245,7 @@ params:
245245
examples:
246246
- text: "<b>Extract, Transform, Load: </b>[Pandas](https://pandas.pydata.org),[ Intake](https://intake.readthedocs.io),[PyJanitor](https://pyjanitor-devs.github.io/pyjanitor/)"
247247
- text: "<b>Exploratory analysis: </b>[Jupyter](https://jupyter.org),[Seaborn](https://seaborn.pydata.org),[ Matplotlib](https://matplotlib.org),[ Altair](https://altair-viz.github.io)"
248-
- text: "<b>Model and evaluate: </b>[scikit-learn](https://scikit-learn.org),[ statsmodels](https://www.statsmodels.org/stable/index.html),[ PyMC3](https://docs.pymc.io),[ spaCy](https://spacy.io)"
248+
- text: "<b>Model and evaluate: </b>[scikit-learn](https://scikit-learn.org),[ statsmodels](https://www.statsmodels.org/stable/index.html),[ PyMC](https://docs.pymc.io),[ spaCy](https://spacy.io)"
249249
- text: "<b>Report in a dashboard: </b>[Dash](https://plotly.com/dash),[ Panel](https://panel.holoviz.org),[ Voila](https://github.com/voila-dashboards/voila)"
250250
content:
251251
- text: For high data volumes, [Dask](https://dask.org) and[Ray](https://ray.io/) are designed to scale. Stabledeployments rely on data versioning ([DVC](https://dvc.org)),experiment tracking ([MLFlow](https://mlflow.org)), andworkflow automation ([Airflow](https://airflow.apache.org) and[Prefect](https://www.prefect.io)).

0 commit comments

Comments
 (0)