-
Notifications
You must be signed in to change notification settings - Fork 533
/
Copy pathmultiproc.py
359 lines (297 loc) · 13.2 KB
/
multiproc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
# -*- coding: utf-8 -*-
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
"""Parallel workflow execution via multiprocessing
Support for child processes running as non-daemons based on
http://stackoverflow.com/a/8963618/1183453
"""
from __future__ import (print_function, division, unicode_literals,
absolute_import)
# Import packages
import os
import multiprocessing as mp
from concurrent.futures import ProcessPoolExecutor
from traceback import format_exception
import sys
from logging import INFO
import gc
from copy import deepcopy
import numpy as np
from ... import logging
from ...utils.profiler import get_system_total_memory_gb
from ..engine import MapNode
from .base import DistributedPluginBase
try:
from textwrap import indent
except ImportError:
def indent(text, prefix):
""" A textwrap.indent replacement for Python < 3.3 """
if not prefix:
return text
splittext = text.splitlines(True)
return prefix + prefix.join(splittext)
# Init logger
logger = logging.getLogger('nipype.workflow')
# Run node
def run_node(node, updatehash, taskid):
"""Function to execute node.run(), catch and log any errors and
return the result dictionary
Parameters
----------
node : nipype Node instance
the node to run
updatehash : boolean
flag for updating hash
taskid : int
an identifier for this task
Returns
-------
result : dictionary
dictionary containing the node runtime results and stats
"""
# Init variables
result = dict(result=None, traceback=None, taskid=taskid)
# Try and execute the node via node.run()
try:
result['result'] = node.run(updatehash=updatehash)
except: # noqa: E722, intendedly catch all here
result['traceback'] = format_exception(*sys.exc_info())
result['result'] = node.result
# Return the result dictionary
return result
class MultiProcPlugin(DistributedPluginBase):
"""
Execute workflow with multiprocessing, not sending more jobs at once
than the system can support.
The plugin_args input to run can be used to control the multiprocessing
execution and defining the maximum amount of memory and threads that
should be used. When those parameters are not specified,
the number of threads and memory of the system is used.
System consuming nodes should be tagged::
memory_consuming_node.mem_gb = 8
thread_consuming_node.n_procs = 16
The default number of threads and memory are set at node
creation, and are 1 and 0.25GB respectively.
Currently supported options are:
- non_daemon: boolean flag to execute as non-daemon processes
- n_procs: maximum number of threads to be executed in parallel
- memory_gb: maximum memory (in GB) that can be used at once.
- raise_insufficient: raise error if the requested resources for
a node over the maximum `n_procs` and/or `memory_gb`
(default is ``True``).
- scheduler: sort jobs topologically (``'tsort'``, default value)
or prioritize jobs by, first, memory consumption and, second,
number of threads (``'mem_thread'`` option).
- mp_context: name of multiprocessing context to use
"""
def __init__(self, plugin_args=None):
# Init variables and instance attributes
super(MultiProcPlugin, self).__init__(plugin_args=plugin_args)
self._taskresult = {}
self._task_obj = {}
self._taskid = 0
# Cache current working directory and make sure we
# change to it when workers are set up
self._cwd = os.getcwd()
# Read in options or set defaults.
self.processors = self.plugin_args.get('n_procs', mp.cpu_count())
self.memory_gb = self.plugin_args.get(
'memory_gb', # Allocate 90% of system memory
get_system_total_memory_gb() * 0.9)
self.raise_insufficient = self.plugin_args.get('raise_insufficient',
True)
# Instantiate different thread pools for non-daemon processes
logger.debug('[MultiProc] Starting (n_procs=%d, '
'mem_gb=%0.2f, cwd=%s)',
self.processors, self.memory_gb, self._cwd)
try:
mp_context = mp.context.get_context(
self.plugin_args.get('mp_context'))
self.pool = ProcessPoolExecutor(max_workers=self.processors,
initializer=os.chdir,
initargs=(self._cwd,),
mp_context=mp_context)
except (AttributeError, TypeError):
# Python < 3.7 does not support initialization or contexts
self.pool = ProcessPoolExecutor(max_workers=self.processors)
self._stats = None
def _async_callback(self, args):
# Make sure runtime is not left at a dubious working directory
os.chdir(self._cwd)
result = args.result()
self._taskresult[result['taskid']] = result
def _get_result(self, taskid):
return self._taskresult.get(taskid)
def _clear_task(self, taskid):
del self._task_obj[taskid]
def _submit_job(self, node, updatehash=False):
self._taskid += 1
# Don't allow streaming outputs
if getattr(node.interface, 'terminal_output', '') == 'stream':
node.interface.terminal_output = 'allatonce'
result_future = self.pool.submit(run_node, node, updatehash, self._taskid)
result_future.add_done_callback(self._async_callback)
self._task_obj[self._taskid] = result_future
logger.debug('[MultiProc] Submitted task %s (taskid=%d).',
node.fullname, self._taskid)
return self._taskid
def _prerun_check(self, graph):
"""Check if any node exeeds the available resources"""
tasks_mem_gb = []
tasks_num_th = []
for node in graph.nodes():
tasks_mem_gb.append(node.mem_gb)
tasks_num_th.append(node.n_procs)
if np.any(np.array(tasks_mem_gb) > self.memory_gb):
logger.warning(
'Some nodes exceed the total amount of memory available '
'(%0.2fGB).', self.memory_gb)
if self.raise_insufficient:
raise RuntimeError('Insufficient resources available for job')
if np.any(np.array(tasks_num_th) > self.processors):
logger.warning(
'Some nodes demand for more threads than available (%d).',
self.processors)
if self.raise_insufficient:
raise RuntimeError('Insufficient resources available for job')
def _postrun_check(self):
self.pool.shutdown()
def _check_resources(self, running_tasks):
"""
Make sure there are resources available
"""
free_memory_gb = self.memory_gb
free_processors = self.processors
for _, jobid in running_tasks:
free_memory_gb -= min(self.procs[jobid].mem_gb, free_memory_gb)
free_processors -= min(self.procs[jobid].n_procs, free_processors)
return free_memory_gb, free_processors
def _send_procs_to_workers(self, updatehash=False, graph=None):
"""
Sends jobs to workers when system resources are available.
"""
# Check to see if a job is available (jobs with all dependencies run)
# See https://github.com/nipy/nipype/pull/2200#discussion_r141605722
# See also https://github.com/nipy/nipype/issues/2372
jobids = np.flatnonzero(~self.proc_done &
(self.depidx.sum(axis=0) == 0).__array__())
# Check available resources by summing all threads and memory used
free_memory_gb, free_processors = self._check_resources(
self.pending_tasks)
stats = (len(self.pending_tasks), len(jobids), free_memory_gb,
self.memory_gb, free_processors, self.processors)
if self._stats != stats:
tasks_list_msg = ''
if logger.level <= INFO:
running_tasks = [
' * %s' % self.procs[jobid].fullname
for _, jobid in self.pending_tasks
]
if running_tasks:
tasks_list_msg = '\nCurrently running:\n'
tasks_list_msg += '\n'.join(running_tasks)
tasks_list_msg = indent(tasks_list_msg, ' ' * 21)
logger.info(
'[MultiProc] Running %d tasks, and %d jobs ready. Free '
'memory (GB): %0.2f/%0.2f, Free processors: %d/%d.%s',
len(self.pending_tasks), len(jobids), free_memory_gb,
self.memory_gb, free_processors, self.processors,
tasks_list_msg)
self._stats = stats
if free_memory_gb < 0.01 or free_processors == 0:
logger.debug('No resources available')
return
if len(jobids) + len(self.pending_tasks) == 0:
logger.debug('No tasks are being run, and no jobs can '
'be submitted to the queue. Potential deadlock')
return
jobids = self._sort_jobs(
jobids, scheduler=self.plugin_args.get('scheduler'))
# Run garbage collector before potentially submitting jobs
gc.collect()
# Submit jobs
for jobid in jobids:
# First expand mapnodes
if isinstance(self.procs[jobid], MapNode):
try:
num_subnodes = self.procs[jobid].num_subnodes()
except Exception:
traceback = format_exception(*sys.exc_info())
self._clean_queue(
jobid,
graph,
result={
'result': None,
'traceback': traceback
})
self.proc_pending[jobid] = False
continue
if num_subnodes > 1:
submit = self._submit_mapnode(jobid)
if not submit:
continue
# Check requirements of this job
next_job_gb = min(self.procs[jobid].mem_gb, self.memory_gb)
next_job_th = min(self.procs[jobid].n_procs, self.processors)
# If node does not fit, skip at this moment
if next_job_th > free_processors or next_job_gb > free_memory_gb:
logger.debug('Cannot allocate job %d (%0.2fGB, %d threads).',
jobid, next_job_gb, next_job_th)
continue
free_memory_gb -= next_job_gb
free_processors -= next_job_th
logger.debug('Allocating %s ID=%d (%0.2fGB, %d threads). Free: '
'%0.2fGB, %d threads.', self.procs[jobid].fullname,
jobid, next_job_gb, next_job_th, free_memory_gb,
free_processors)
# change job status in appropriate queues
self.proc_done[jobid] = True
self.proc_pending[jobid] = True
# If cached and up-to-date just retrieve it, don't run
if self._local_hash_check(jobid, graph):
continue
# updatehash and run_without_submitting are also run locally
if updatehash or self.procs[jobid].run_without_submitting:
logger.debug('Running node %s on master thread',
self.procs[jobid])
try:
self.procs[jobid].run(updatehash=updatehash)
except Exception:
traceback = format_exception(*sys.exc_info())
self._clean_queue(
jobid,
graph,
result={
'result': None,
'traceback': traceback
})
# Release resources
self._task_finished_cb(jobid)
self._remove_node_dirs()
free_memory_gb += next_job_gb
free_processors += next_job_th
# Display stats next loop
self._stats = None
# Clean up any debris from running node in main process
gc.collect()
continue
# Task should be submitted to workers
# Send job to task manager and add to pending tasks
if self._status_callback:
self._status_callback(self.procs[jobid], 'start')
tid = self._submit_job(
deepcopy(self.procs[jobid]), updatehash=updatehash)
if tid is None:
self.proc_done[jobid] = False
self.proc_pending[jobid] = False
else:
self.pending_tasks.insert(0, (tid, jobid))
# Display stats next loop
self._stats = None
def _sort_jobs(self, jobids, scheduler='tsort'):
if scheduler == 'mem_thread':
return sorted(
jobids,
key=lambda item: (self.procs[item].mem_gb, self.procs[item].n_procs)
)
return jobids