@@ -57,7 +57,7 @@ module _ where
57
57
Σ I A ⇔ Σ J B
58
58
Σ-⇔ {B = B} I↠J A⇔B = mk⇔
59
59
(map (to I↠J) (Equivalence.to A⇔B))
60
- (map (to⁻ I↠J) (Equivalence.from A⇔B ∘ ≡.subst B (≡.sym (proj₂ (surjective I↠J _) ≡.refl))))
60
+ (map (section I↠J) (Equivalence.from A⇔B ∘ ≡.subst B (≡.sym (proj₂ (surjective I↠J _) ≡.refl))))
61
61
62
62
-- See also Data.Product.Relation.Binary.Pointwise.Dependent.WithK.↣.
63
63
@@ -193,16 +193,16 @@ module _ where
193
193
to′ : Σ I A → Σ J B
194
194
to′ = map (to I↠J) (to A↠B)
195
195
196
- backcast : ∀ {i} → B i → B (to I↠J (to⁻ I↠J i))
196
+ backcast : ∀ {i} → B i → B (to I↠J (section I↠J i))
197
197
backcast = ≡.subst B (≡.sym (to∘to⁻ I↠J _))
198
198
199
199
to⁻′ : Σ J B → Σ I A
200
- to⁻′ = map (to⁻ I↠J) (Surjection.to⁻ A↠B ∘ backcast)
200
+ to⁻′ = map (section I↠J) (Surjection.section A↠B ∘ backcast)
201
201
202
202
strictlySurjective′ : StrictlySurjective _≡_ to′
203
203
strictlySurjective′ (x , y) = to⁻′ (x , y) , Σ-≡,≡→≡
204
204
( to∘to⁻ I↠J x
205
- , (≡.subst B (to∘to⁻ I↠J x) (to A↠B (to⁻ A↠B (backcast y))) ≡⟨ ≡.cong (≡.subst B _) (to∘to⁻ A↠B _) ⟩
205
+ , (≡.subst B (to∘to⁻ I↠J x) (to A↠B (section A↠B (backcast y))) ≡⟨ ≡.cong (≡.subst B _) (to∘to⁻ A↠B _) ⟩
206
206
≡.subst B (to∘to⁻ I↠J x) (backcast y) ≡⟨ ≡.subst-subst-sym (to∘to⁻ I↠J x) ⟩
207
207
y ∎)
208
208
) where open ≡.≡-Reasoning
@@ -249,7 +249,7 @@ module _ where
249
249
Σ I A ↔ Σ J B
250
250
Σ-↔ {I = I} {J = J} {A = A} {B = B} I↔J A↔B = mk↔ₛ′
251
251
(Surjection.to surjection′)
252
- (Surjection.to⁻ surjection′)
252
+ (Surjection.section surjection′)
253
253
(Surjection.to∘to⁻ surjection′)
254
254
left-inverse-of
255
255
where
@@ -260,7 +260,7 @@ module _ where
260
260
surjection′ : Σ I A ↠ Σ J B
261
261
surjection′ = Σ-↠ (↔⇒↠ (≃⇒↔ I≃J)) (↔⇒↠ A↔B)
262
262
263
- left-inverse-of : ∀ p → Surjection.to⁻ surjection′ (Surjection.to surjection′ p) ≡ p
263
+ left-inverse-of : ∀ p → Surjection.section surjection′ (Surjection.to surjection′ p) ≡ p
264
264
left-inverse-of (x , y) = to Σ-≡,≡↔≡
265
265
( _≃_.left-inverse-of I≃J x
266
266
, (≡.subst A (_≃_.left-inverse-of I≃J x)
0 commit comments