|
| 1 | +import json |
| 2 | +import os |
| 3 | + |
| 4 | +import torch |
| 5 | + |
| 6 | +from diffusers import UNet1DModel |
| 7 | + |
| 8 | + |
| 9 | +os.makedirs("hub/hopper-medium-v2/unet/hor32", exist_ok=True) |
| 10 | +os.makedirs("hub/hopper-medium-v2/unet/hor128", exist_ok=True) |
| 11 | + |
| 12 | +os.makedirs("hub/hopper-medium-v2/value_function", exist_ok=True) |
| 13 | + |
| 14 | + |
| 15 | +def unet(hor): |
| 16 | + if hor == 128: |
| 17 | + down_block_types = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") |
| 18 | + block_out_channels = (32, 128, 256) |
| 19 | + up_block_types = ("UpResnetBlock1D", "UpResnetBlock1D") |
| 20 | + |
| 21 | + elif hor == 32: |
| 22 | + down_block_types = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") |
| 23 | + block_out_channels = (32, 64, 128, 256) |
| 24 | + up_block_types = ("UpResnetBlock1D", "UpResnetBlock1D", "UpResnetBlock1D") |
| 25 | + model = torch.load(f"/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch") |
| 26 | + state_dict = model.state_dict() |
| 27 | + config = dict( |
| 28 | + down_block_types=down_block_types, |
| 29 | + block_out_channels=block_out_channels, |
| 30 | + up_block_types=up_block_types, |
| 31 | + layers_per_block=1, |
| 32 | + use_timestep_embedding=True, |
| 33 | + out_block_type="OutConv1DBlock", |
| 34 | + norm_num_groups=8, |
| 35 | + downsample_each_block=False, |
| 36 | + in_channels=14, |
| 37 | + out_channels=14, |
| 38 | + extra_in_channels=0, |
| 39 | + time_embedding_type="positional", |
| 40 | + flip_sin_to_cos=False, |
| 41 | + freq_shift=1, |
| 42 | + sample_size=65536, |
| 43 | + mid_block_type="MidResTemporalBlock1D", |
| 44 | + act_fn="mish", |
| 45 | + ) |
| 46 | + hf_value_function = UNet1DModel(**config) |
| 47 | + print(f"length of state dict: {len(state_dict.keys())}") |
| 48 | + print(f"length of value function dict: {len(hf_value_function.state_dict().keys())}") |
| 49 | + mapping = dict((k, hfk) for k, hfk in zip(model.state_dict().keys(), hf_value_function.state_dict().keys())) |
| 50 | + for k, v in mapping.items(): |
| 51 | + state_dict[v] = state_dict.pop(k) |
| 52 | + hf_value_function.load_state_dict(state_dict) |
| 53 | + |
| 54 | + torch.save(hf_value_function.state_dict(), f"hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin") |
| 55 | + with open(f"hub/hopper-medium-v2/unet/hor{hor}/config.json", "w") as f: |
| 56 | + json.dump(config, f) |
| 57 | + |
| 58 | + |
| 59 | +def value_function(): |
| 60 | + config = dict( |
| 61 | + in_channels=14, |
| 62 | + down_block_types=("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"), |
| 63 | + up_block_types=(), |
| 64 | + out_block_type="ValueFunction", |
| 65 | + mid_block_type="ValueFunctionMidBlock1D", |
| 66 | + block_out_channels=(32, 64, 128, 256), |
| 67 | + layers_per_block=1, |
| 68 | + downsample_each_block=True, |
| 69 | + sample_size=65536, |
| 70 | + out_channels=14, |
| 71 | + extra_in_channels=0, |
| 72 | + time_embedding_type="positional", |
| 73 | + use_timestep_embedding=True, |
| 74 | + flip_sin_to_cos=False, |
| 75 | + freq_shift=1, |
| 76 | + norm_num_groups=8, |
| 77 | + act_fn="mish", |
| 78 | + ) |
| 79 | + |
| 80 | + model = torch.load("/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch") |
| 81 | + state_dict = model |
| 82 | + hf_value_function = UNet1DModel(**config) |
| 83 | + print(f"length of state dict: {len(state_dict.keys())}") |
| 84 | + print(f"length of value function dict: {len(hf_value_function.state_dict().keys())}") |
| 85 | + |
| 86 | + mapping = dict((k, hfk) for k, hfk in zip(state_dict.keys(), hf_value_function.state_dict().keys())) |
| 87 | + for k, v in mapping.items(): |
| 88 | + state_dict[v] = state_dict.pop(k) |
| 89 | + |
| 90 | + hf_value_function.load_state_dict(state_dict) |
| 91 | + |
| 92 | + torch.save(hf_value_function.state_dict(), "hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin") |
| 93 | + with open("hub/hopper-medium-v2/value_function/config.json", "w") as f: |
| 94 | + json.dump(config, f) |
| 95 | + |
| 96 | + |
| 97 | +if __name__ == "__main__": |
| 98 | + unet(32) |
| 99 | + # unet(128) |
| 100 | + value_function() |
0 commit comments