@@ -8829,6 +8829,23 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty
8829
8829
auto use_more_bits = [](int i_layer, int num_layers) -> bool {
8830
8830
return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
8831
8831
};
8832
+ const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
8833
+ auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
8834
+ if (n_expert > 1) {
8835
+ // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly
8836
+ // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
8837
+ // for getting the current layer as I initially thought, and we need to resort to parsing the
8838
+ // tensor name.
8839
+ n_layer /= n_expert;
8840
+ if (sscanf(name, "blk.%d.", &i_layer) != 1) {
8841
+ throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
8842
+ }
8843
+ if (i_layer < 0 || i_layer >= n_layer) {
8844
+ throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer));
8845
+ }
8846
+ }
8847
+ return std::make_pair(i_layer, n_layer);
8848
+ };
8832
8849
8833
8850
if (name == tn(LLM_TENSOR_OUTPUT, "weight")) {
8834
8851
int nx = tensor->ne[0];
@@ -8890,24 +8907,8 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty
8890
8907
new_type = GGML_TYPE_Q2_K;
8891
8908
}
8892
8909
} else if (name.find("ffn_down") != std::string::npos) {
8893
- const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
8894
- int i_layer, n_layer;
8895
- if (n_expert == 1) {
8896
- i_layer = qs.i_ffn_down;
8897
- n_layer = qs.n_ffn_down;
8898
- } else {
8899
- // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly
8900
- // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
8901
- // for getting the current layer as I initially thought, and we need to resort to parsing the
8902
- // tensor name.
8903
- n_layer = qs.n_ffn_down / n_expert;
8904
- if (sscanf(name.c_str(), "blk.%d.ffn_down", &i_layer) != 1) {
8905
- throw std::runtime_error(format("Failed to determine layer for tensor %s", name.c_str()));
8906
- }
8907
- if (i_layer < 0 || i_layer >= n_layer) {
8908
- throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name.c_str(), n_layer));
8909
- }
8910
- }
8910
+ auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
8911
+ int i_layer = info.first, n_layer = info.second;
8911
8912
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
8912
8913
else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XS) {
8913
8914
if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
@@ -8963,13 +8964,17 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty
8963
8964
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
8964
8965
}
8965
8966
else if (name.find("ffn_gate") != std::string::npos) {
8966
- if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XS && !use_more_bits(qs.i_ffn_gate, qs.n_ffn_gate)) {
8967
+ auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
8968
+ int i_layer = info.first, n_layer = info.second;
8969
+ if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XS && !use_more_bits(i_layer, n_layer)) {
8967
8970
new_type = GGML_TYPE_Q2_K;
8968
8971
}
8969
8972
++qs.i_ffn_gate;
8970
8973
}
8971
8974
else if (name.find("ffn_up") != std::string::npos) {
8972
- if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XS && !use_more_bits(qs.i_ffn_up, qs.n_ffn_up)) {
8975
+ auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
8976
+ int i_layer = info.first, n_layer = info.second;
8977
+ if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XS && !use_more_bits(i_layer, n_layer)) {
8973
8978
new_type = GGML_TYPE_Q2_K;
8974
8979
}
8975
8980
++qs.i_ffn_up;
0 commit comments