This repository was archived by the owner on Apr 8, 2025. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 249
/
Copy pathtokenization.py
643 lines (564 loc) · 29.8 KB
/
tokenization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
# coding=utf-8
# Copyright 2018 deepset team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes."""
from __future__ import absolute_import, division, print_function, unicode_literals
import collections
import json
import logging
import os
import re
from pathlib import Path
import numpy as np
from transformers import (
AlbertTokenizer, AlbertTokenizerFast,
BertTokenizer, BertTokenizerFast,
DistilBertTokenizer, DistilBertTokenizerFast,
ElectraTokenizer, ElectraTokenizerFast,
RobertaTokenizer, RobertaTokenizerFast,
XLMRobertaTokenizer, XLMRobertaTokenizerFast,
XLNetTokenizer, XLNetTokenizerFast,
CamembertTokenizer, CamembertTokenizerFast,
DPRContextEncoderTokenizer, DPRContextEncoderTokenizerFast,
DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast,
BigBirdTokenizer, BigBirdTokenizerFast
)
from transformers.models.bert.tokenization_bert import load_vocab
from transformers.tokenization_utils import PreTrainedTokenizer
from transformers import AutoConfig
from farm.data_handler.samples import SampleBasket
from farm.modeling.wordembedding_utils import load_from_cache, EMBEDDING_VOCAB_FILES_MAP, run_split_on_punc
logger = logging.getLogger(__name__)
# Special characters used by the different tokenizers to indicate start of word / whitespace
SPECIAL_TOKENIZER_CHARS = r"^(##|Ġ|▁)"
class Tokenizer:
"""
Simple Wrapper for Tokenizers from the transformers package. Enables loading of different Tokenizer classes with a uniform interface.
"""
@classmethod
def load(cls, pretrained_model_name_or_path, revision=None, tokenizer_class=None, use_fast=True, **kwargs):
"""
Enables loading of different Tokenizer classes with a uniform interface. Either infer the class from
model config or define it manually via `tokenizer_class`.
:param pretrained_model_name_or_path: The path of the saved pretrained model or its name (e.g. `bert-base-uncased`)
:type pretrained_model_name_or_path: str
:param revision: The version of model to use from the HuggingFace model hub. Can be tag name, branch name, or commit hash.
:type revision: str
:param tokenizer_class: (Optional) Name of the tokenizer class to load (e.g. `BertTokenizer`)
:type tokenizer_class: str
:param use_fast: (Optional, False by default) Indicate if FARM should try to load the fast version of the tokenizer (True) or
use the Python one (False).
Only DistilBERT, BERT and Electra fast tokenizers are supported.
:type use_fast: bool
:param kwargs:
:return: Tokenizer
"""
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
kwargs["revision"] = revision
if tokenizer_class is None:
tokenizer_class = cls._infer_tokenizer_class(pretrained_model_name_or_path)
logger.info(f"Loading tokenizer of type '{tokenizer_class}'")
# return appropriate tokenizer object
ret = None
if "AlbertTokenizer" in tokenizer_class:
if use_fast:
ret = AlbertTokenizerFast.from_pretrained(pretrained_model_name_or_path, keep_accents=True, **kwargs)
else:
ret = AlbertTokenizer.from_pretrained(pretrained_model_name_or_path, keep_accents=True, **kwargs)
elif "XLMRobertaTokenizer" in tokenizer_class:
if use_fast:
ret = XLMRobertaTokenizerFast.from_pretrained(pretrained_model_name_or_path, **kwargs)
else:
ret = XLMRobertaTokenizer.from_pretrained(pretrained_model_name_or_path, **kwargs)
elif "RobertaTokenizer" in tokenizer_class:
if use_fast:
ret = RobertaTokenizerFast.from_pretrained(pretrained_model_name_or_path, **kwargs)
else:
ret = RobertaTokenizer.from_pretrained(pretrained_model_name_or_path, **kwargs)
elif "DistilBertTokenizer" in tokenizer_class:
if use_fast:
ret = DistilBertTokenizerFast.from_pretrained(pretrained_model_name_or_path, **kwargs)
else:
ret = DistilBertTokenizer.from_pretrained(pretrained_model_name_or_path, **kwargs)
elif "BertTokenizer" in tokenizer_class:
if use_fast:
ret = BertTokenizerFast.from_pretrained(pretrained_model_name_or_path, **kwargs)
else:
ret = BertTokenizer.from_pretrained(pretrained_model_name_or_path, **kwargs)
elif "XLNetTokenizer" in tokenizer_class:
if use_fast:
ret = XLNetTokenizerFast.from_pretrained(pretrained_model_name_or_path, keep_accents=True, **kwargs)
else:
ret = XLNetTokenizer.from_pretrained(pretrained_model_name_or_path, keep_accents=True, **kwargs)
elif "ElectraTokenizer" in tokenizer_class:
if use_fast:
ret = ElectraTokenizerFast.from_pretrained(pretrained_model_name_or_path, **kwargs)
else:
ret = ElectraTokenizer.from_pretrained(pretrained_model_name_or_path, **kwargs)
elif tokenizer_class == "EmbeddingTokenizer":
if use_fast:
logger.error('EmbeddingTokenizerFast is not supported! Using EmbeddingTokenizer instead.')
ret = EmbeddingTokenizer.from_pretrained(pretrained_model_name_or_path, **kwargs)
else:
ret = EmbeddingTokenizer.from_pretrained(pretrained_model_name_or_path, **kwargs)
elif "CamembertTokenizer" in tokenizer_class:
if use_fast:
ret = CamembertTokenizerFast.from_pretrained(pretrained_model_name_or_path, **kwargs)
else:
ret = CamembertTokenizer.from_pretrained(pretrained_model_name_or_path, **kwargs)
elif "DPRQuestionEncoderTokenizer" in tokenizer_class:
if use_fast:
ret = DPRQuestionEncoderTokenizerFast.from_pretrained(pretrained_model_name_or_path, **kwargs)
else:
ret = DPRQuestionEncoderTokenizer.from_pretrained(pretrained_model_name_or_path, **kwargs)
elif "DPRContextEncoderTokenizer" in tokenizer_class:
if use_fast:
ret = DPRContextEncoderTokenizerFast.from_pretrained(pretrained_model_name_or_path, **kwargs)
else:
ret = DPRContextEncoderTokenizer.from_pretrained(pretrained_model_name_or_path, **kwargs)
elif "BigBirdTokenizer" in tokenizer_class:
if use_fast:
ret = BigBirdTokenizerFast.from_pretrained(pretrained_model_name_or_path, **kwargs)
else:
ret = BigBirdTokenizer.from_pretrained(pretrained_model_name_or_path, **kwargs)
if ret is None:
raise Exception("Unable to load tokenizer")
else:
return ret
@staticmethod
def _infer_tokenizer_class(pretrained_model_name_or_path):
# Infer Tokenizer from model type in config
try:
config = AutoConfig.from_pretrained(pretrained_model_name_or_path)
except OSError:
# FARM model (no 'config.json' file)
try:
config = AutoConfig.from_pretrained(pretrained_model_name_or_path + "/language_model_config.json")
except Exception as e:
logger.warning("No config file found. Trying to infer Tokenizer type from model name")
tokenizer_class = Tokenizer._infer_tokenizer_class_from_string(pretrained_model_name_or_path)
return tokenizer_class
model_type = config.model_type
if model_type == "xlm-roberta":
tokenizer_class = "XLMRobertaTokenizer"
elif model_type == "roberta":
if "mlm" in pretrained_model_name_or_path.lower():
raise NotImplementedError("MLM part of codebert is currently not supported in FARM")
tokenizer_class = "RobertaTokenizer"
elif model_type == "camembert":
tokenizer_class = "CamembertTokenizer"
elif model_type == "albert":
tokenizer_class = "AlbertTokenizer"
elif model_type == "distilbert":
tokenizer_class = "DistilBertTokenizer"
elif model_type == "bert":
tokenizer_class = "BertTokenizer"
elif model_type == "xlnet":
tokenizer_class = "XLNetTokenizer"
elif model_type == "electra":
tokenizer_class = "ElectraTokenizer"
elif model_type == "dpr":
if config.architectures[0] == "DPRQuestionEncoder":
tokenizer_class = "DPRQuestionEncoderTokenizer"
elif config.architectures[0] == "DPRContextEncoder":
tokenizer_class = "DPRContextEncoderTokenizer"
elif config.architectures[0] == "DPRReader":
raise NotImplementedError("DPRReader models are currently not supported.")
elif model_type == "big_bird":
tokenizer_class = "BigBirdTokenizer"
else:
# Fall back to inferring type from model name
logger.warning("Could not infer Tokenizer type from config. Trying to infer "
"Tokenizer type from model name.")
tokenizer_class = Tokenizer._infer_tokenizer_class_from_string(pretrained_model_name_or_path)
return tokenizer_class
@staticmethod
def _infer_tokenizer_class_from_string(pretrained_model_name_or_path):
# If inferring tokenizer class from config doesn't succeed,
# fall back to inferring tokenizer class from model name.
if "albert" in pretrained_model_name_or_path.lower():
tokenizer_class = "AlbertTokenizer"
elif "bigbird" in pretrained_model_name_or_path.lower():
tokenizer_class = "BigBirdTokenizer"
elif "xlm-roberta" in pretrained_model_name_or_path.lower():
tokenizer_class = "XLMRobertaTokenizer"
elif "roberta" in pretrained_model_name_or_path.lower():
tokenizer_class = "RobertaTokenizer"
elif "codebert" in pretrained_model_name_or_path.lower():
if "mlm" in pretrained_model_name_or_path.lower():
raise NotImplementedError("MLM part of codebert is currently not supported in FARM")
else:
tokenizer_class = "RobertaTokenizer"
elif "camembert" in pretrained_model_name_or_path.lower() or "umberto" in pretrained_model_name_or_path.lower():
tokenizer_class = "CamembertTokenizer"
elif "distilbert" in pretrained_model_name_or_path.lower():
tokenizer_class = "DistilBertTokenizer"
elif "bert" in pretrained_model_name_or_path.lower():
tokenizer_class = "BertTokenizer"
elif "xlnet" in pretrained_model_name_or_path.lower():
tokenizer_class = "XLNetTokenizer"
elif "electra" in pretrained_model_name_or_path.lower():
tokenizer_class = "ElectraTokenizer"
elif "word2vec" in pretrained_model_name_or_path.lower() or \
"glove" in pretrained_model_name_or_path.lower() or \
"fasttext" in pretrained_model_name_or_path.lower():
tokenizer_class = "EmbeddingTokenizer"
elif "minilm" in pretrained_model_name_or_path.lower():
tokenizer_class = "BertTokenizer"
elif "dpr-question_encoder" in pretrained_model_name_or_path.lower():
tokenizer_class = "DPRQuestionEncoderTokenizer"
elif "dpr-ctx_encoder" in pretrained_model_name_or_path.lower():
tokenizer_class = "DPRContextEncoderTokenizer"
else:
raise ValueError(f"Could not infer tokenizer_class from model config or "
f"name '{pretrained_model_name_or_path}'. Set arg `tokenizer_class` "
f"in Tokenizer.load() to one of: AlbertTokenizer, XLMRobertaTokenizer, "
f"RobertaTokenizer, DistilBertTokenizer, BertTokenizer, XLNetTokenizer, "
f"CamembertTokenizer, ElectraTokenizer, DPRQuestionEncoderTokenizer,"
f"DPRContextEncoderTokenizer.")
return tokenizer_class
class EmbeddingTokenizer(PreTrainedTokenizer):
"""Constructs an EmbeddingTokenizer.
"""
def __init__(
self,
vocab_file,
do_lower_case=True,
unk_token="[UNK]",
sep_token="[SEP]",
pad_token="[PAD]",
cls_token="[CLS]",
mask_token="[MASK]",
**kwargs
):
"""
:param vocab_file: Path to a one-word-per-line vocabulary file
:type vocab_file: str
:param do_lower_case: Flag whether to lower case the input
:type do_lower_case: bool
"""
# TODO check why EmbeddingTokenizer.tokenize gives many UNK, while tokenize_with_metadata() works fine
super().__init__(
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
**kwargs,
)
if not os.path.isfile(vocab_file):
raise ValueError("Can't find a vocabulary file at path '{}'.".format(vocab_file))
self.vocab = load_vocab(vocab_file)
self.unk_tok_idx = self.vocab[unk_token]
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
self.do_lower_case = do_lower_case
@property
def vocab_size(self):
return len(self.vocab)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
"""Load the tokenizer from local path or remote."""
if pretrained_model_name_or_path in EMBEDDING_VOCAB_FILES_MAP["vocab_file"]:
# Get the vocabulary from AWS S3 bucket or cache
resolved_vocab_file = load_from_cache(pretrained_model_name_or_path,
EMBEDDING_VOCAB_FILES_MAP["vocab_file"],
**kwargs)
elif os.path.isdir(pretrained_model_name_or_path):
# Get the vocabulary from local files
logger.info(
f"Model name '{pretrained_model_name_or_path}' not found in model shortcut name "
f"list ({', '.join(EMBEDDING_VOCAB_FILES_MAP['vocab_file'].keys())}). "
f"Assuming '{pretrained_model_name_or_path}' is a path to a directory containing tokenizer files.")
temp = open(str(Path(pretrained_model_name_or_path) / "language_model_config.json"), "r",
encoding="utf-8").read()
config_dict = json.loads(temp)
resolved_vocab_file = str(Path(pretrained_model_name_or_path) / config_dict["vocab_filename"])
else:
logger.error(
f"Model name '{pretrained_model_name_or_path}' not found in model shortcut name "
f"list ({', '.join(EMBEDDING_VOCAB_FILES_MAP['vocab_file'].keys())}) nor as local folder ")
raise NotImplementedError
tokenizer = cls(vocab_file=resolved_vocab_file, **kwargs)
return tokenizer
def _tokenize(self, text, **kwargs):
if self.do_lower_case:
text = text.lower()
tokens = run_split_on_punc(text)
tokens = [t if t in self.vocab else self.unk_token for t in tokens]
return tokens
def save_pretrained(self, vocab_path):
"""Save the tokenizer vocabulary to a directory or file."""
index = 0
if os.path.isdir(vocab_path):
vocab_file = os.path.join(vocab_path, "vocab.txt")
else:
vocab_file = vocab_path
with open(vocab_file, "w", encoding="utf-8") as writer:
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
"Saving vocabulary to {}: vocabulary indices are not consecutive."
" Please check that the vocabulary is not corrupted!".format(vocab_file)
)
index = token_index
writer.write(token + "\n")
index += 1
return (vocab_file,)
def _convert_token_to_id(self, token):
return self.vocab.get(token, self.unk_tok_idx)
def tokenize_with_metadata(text, tokenizer):
"""
Performing tokenization while storing some important metadata for each token:
* offsets: (int) Character index where the token begins in the original text
* start_of_word: (bool) If the token is the start of a word. Particularly helpful for NER and QA tasks.
We do this by first doing whitespace tokenization and then applying the model specific tokenizer to each "word".
.. note:: We don't assume to preserve exact whitespaces in the tokens!
This means: tabs, new lines, multiple whitespace etc will all resolve to a single " ".
This doesn't make a difference for BERT + XLNet but it does for RoBERTa.
For RoBERTa it has the positive effect of a shorter sequence length, but some information about whitespace
type is lost which might be helpful for certain NLP tasks ( e.g tab for tables).
:param text: Text to tokenize
:type text: str
:param tokenizer: Tokenizer (e.g. from Tokenizer.load())
:return: Dictionary with "tokens", "offsets" and "start_of_word"
:rtype: dict
"""
# normalize all other whitespace characters to " "
# Note: using text.split() directly would destroy the offset,
# since \n\n\n would be treated similarly as a single \n
text = re.sub(r"\s", " ", text)
# Fast Tokenizers return offsets, so we don't need to calculate them ourselves
if tokenizer.is_fast:
#tokenized = tokenizer(text, return_offsets_mapping=True, return_special_tokens_mask=True)
tokenized2 = tokenizer.encode_plus(text, return_offsets_mapping=True, return_special_tokens_mask=True)
tokens2 = tokenized2["input_ids"]
offsets2 = np.array([x[0] for x in tokenized2["offset_mapping"]])
#offsets2 = [x[0] for x in tokenized2["offset_mapping"]]
words = np.array(tokenized2.encodings[0].words)
# TODO check for validity for all tokenizer and special token types
words[0] = -1
words[-1] = words[-2]
words += 1
start_of_word2 = [0] + list(np.ediff1d(words))
#######
# start_of_word3 = []
# last_word = -1
# for word_id in tokenized2.encodings[0].words:
# if word_id is None or word_id == last_word:
# start_of_word3.append(0)
# else:
# start_of_word3.append(1)
# last_word = word_id
tokenized_dict = {"tokens": tokens2, "offsets": offsets2, "start_of_word": start_of_word2}
else:
# split text into "words" (here: simple whitespace tokenizer).
words = text.split(" ")
word_offsets = []
cumulated = 0
for idx, word in enumerate(words):
word_offsets.append(cumulated)
cumulated += len(word) + 1 # 1 because we so far have whitespace tokenizer
# split "words" into "subword tokens"
tokens, offsets, start_of_word = _words_to_tokens(
words, word_offsets, tokenizer
)
tokenized_dict = {"tokens": tokens, "offsets": offsets, "start_of_word": start_of_word}
return tokenized_dict
def _words_to_tokens(words, word_offsets, tokenizer):
"""
Tokenize "words" into subword tokens while keeping track of offsets and if a token is the start of a word.
:param words: list of words.
:type words: list
:param word_offsets: Character indices where each word begins in the original text
:type word_offsets: list
:param tokenizer: Tokenizer (e.g. from Tokenizer.load())
:return: tokens, offsets, start_of_word
"""
tokens = []
token_offsets = []
start_of_word = []
idx = 0
for w, w_off in zip(words, word_offsets):
idx += 1
if idx % 500000 == 0:
logger.info(idx)
# Get (subword) tokens of single word.
# empty / pure whitespace
if len(w) == 0:
continue
# For the first word of a text: we just call the regular tokenize function.
# For later words: we need to call it with add_prefix_space=True to get the same results with roberta / gpt2 tokenizer
# see discussion here. https://github.com/huggingface/transformers/issues/1196
elif len(tokens) == 0:
tokens_word = tokenizer.tokenize(w)
else:
if type(tokenizer) == RobertaTokenizer:
tokens_word = tokenizer.tokenize(w, add_prefix_space=True)
else:
tokens_word = tokenizer.tokenize(w)
# Sometimes the tokenizer returns no tokens
if len(tokens_word) == 0:
continue
tokens += tokens_word
# get global offset for each token in word + save marker for first tokens of a word
first_tok = True
for tok in tokens_word:
token_offsets.append(w_off)
# Depending on the tokenizer type special chars are added to distinguish tokens with preceeding
# whitespace (=> "start of a word"). We need to get rid of these to calculate the original length of the token
orig_tok = re.sub(SPECIAL_TOKENIZER_CHARS, "", tok)
# Don't use length of unk token for offset calculation
if orig_tok == tokenizer.special_tokens_map["unk_token"]:
w_off += 1
else:
w_off += len(orig_tok)
if first_tok:
start_of_word.append(True)
first_tok = False
else:
start_of_word.append(False)
return tokens, token_offsets, start_of_word
def truncate_sequences(seq_a, seq_b, tokenizer, max_seq_len, truncation_strategy='longest_first',
with_special_tokens=True, stride=0):
"""
Reduces a single sequence or a pair of sequences to a maximum sequence length.
The sequences can contain tokens or any other elements (offsets, masks ...).
If `with_special_tokens` is enabled, it'll remove some additional tokens to have exactly enough space for later adding special tokens (CLS, SEP etc.)
Supported truncation strategies:
- longest_first: (default) Iteratively reduce the inputs sequence until the input is under max_length starting from the longest one at each token (when there is a pair of input sequences). Overflowing tokens only contains overflow from the first sequence.
- only_first: Only truncate the first sequence. raise an error if the first sequence is shorter or equal to than num_tokens_to_remove.
- only_second: Only truncate the second sequence
- do_not_truncate: Does not truncate (raise an error if the input sequence is longer than max_length)
:param seq_a: First sequence of tokens/offsets/...
:type seq_a: list
:param seq_b: Optional second sequence of tokens/offsets/...
:type seq_b: None or list
:param tokenizer: Tokenizer (e.g. from Tokenizer.load())
:param max_seq_len:
:type max_seq_len: int
:param truncation_strategy: how the sequence(s) should be truncated down. Default: "longest_first" (see above for other options).
:type truncation_strategy: str
:param with_special_tokens: If true, it'll remove some additional tokens to have exactly enough space for later adding special tokens (CLS, SEP etc.)
:type with_special_tokens: bool
:param stride: optional stride of the window during truncation
:type stride: int
:return: truncated seq_a, truncated seq_b, overflowing tokens
"""
pair = bool(seq_b is not None)
len_a = len(seq_a)
len_b = len(seq_b) if pair else 0
num_special_tokens = tokenizer.num_special_tokens_to_add(pair=pair) if with_special_tokens else 0
total_len = len_a + len_b + num_special_tokens
overflowing_tokens = []
if max_seq_len and total_len > max_seq_len:
seq_a, seq_b, overflowing_tokens = tokenizer.truncate_sequences(seq_a, pair_ids=seq_b,
num_tokens_to_remove=total_len - max_seq_len,
truncation_strategy=truncation_strategy,
stride=stride)
return (seq_a, seq_b, overflowing_tokens)
def insert_at_special_tokens_pos(seq, special_tokens_mask, insert_element):
"""
Adds elements to a sequence at the positions that align with special tokens.
This is useful for expanding label ids or masks, so that they align with corresponding tokens (incl. the special tokens)
Example:
.. code-block:: python
# Tokens: ["CLS", "some", "words","SEP"]
>>> special_tokens_mask = [1,0,0,1]
>>> lm_label_ids = [12,200]
>>> insert_at_special_tokens_pos(lm_label_ids, special_tokens_mask, insert_element=-1)
[-1, 12, 200, -1]
:param seq: List where you want to insert new elements
:type seq: list
:param special_tokens_mask: list with "1" for positions of special chars
:type special_tokens_mask: list
:param insert_element: the value you want to insert
:return: list
"""
new_seq = seq.copy()
special_tokens_indices = np.where(np.array(special_tokens_mask) == 1)[0]
for idx in special_tokens_indices:
new_seq.insert(idx, insert_element)
return new_seq
def tokenize_batch_question_answering(pre_baskets, tokenizer, indices):
"""
Tokenizes text data for question answering tasks. Tokenization means splitting words into subwords, depending on the
tokenizer's vocabulary.
- We first tokenize all documents in batch mode. (When using FastTokenizers Rust multithreading can be enabled by TODO add how to enable rust mt)
- Then we tokenize each question individually
- We construct dicts with question and corresponding document text + tokens + offsets + ids
:param pre_baskets: input dicts with QA info #todo change to input objects
:param tokenizer: tokenizer to be used
:param indices: list, indices used during multiprocessing so that IDs assigned to our baskets are unique
:return: baskets, list containing question and corresponding document information
"""
assert len(indices) == len(pre_baskets)
assert tokenizer.is_fast, "Processing QA data is only supported with fast tokenizers for now.\n" \
"Please load Tokenizers with 'use_fast=True' option."
baskets = []
# # Tokenize texts in batch mode
texts = [d["context"] for d in pre_baskets]
tokenized_docs_batch = tokenizer.batch_encode_plus(texts, return_offsets_mapping=True, return_special_tokens_mask=True, add_special_tokens=False, verbose=False)
# Extract relevant data
tokenids_batch = tokenized_docs_batch["input_ids"]
offsets_batch = []
for o in tokenized_docs_batch["offset_mapping"]:
offsets_batch.append(np.array([x[0] for x in o]))
start_of_words_batch = []
for e in tokenized_docs_batch.encodings:
start_of_words_batch.append(_get_start_of_word_QA(e.words))
for i_doc, d in enumerate(pre_baskets):
document_text = d["context"]
# # Tokenize questions one by one
for i_q, q in enumerate(d["qas"]):
question_text = q["question"]
tokenized_q = tokenizer.encode_plus(question_text, return_offsets_mapping=True, return_special_tokens_mask=True, add_special_tokens=False)
# Extract relevant data
question_tokenids = tokenized_q["input_ids"]
question_offsets = [x[0] for x in tokenized_q["offset_mapping"]]
question_sow = _get_start_of_word_QA(tokenized_q.encodings[0].words)
external_id = q["id"]
# The internal_id depends on unique ids created for each process before forking
internal_id = f"{indices[i_doc]}-{i_q}"
raw = {"document_text": document_text,
"document_tokens": tokenids_batch[i_doc],
"document_offsets": offsets_batch[i_doc],
"document_start_of_word": start_of_words_batch[i_doc],
"question_text": question_text,
"question_tokens": question_tokenids,
"question_offsets": question_offsets,
"question_start_of_word": question_sow,
"answers": q["answers"],
}
# TODO add only during debug mode (need to create debug mode)
raw["document_tokens_strings"] = tokenized_docs_batch.encodings[i_doc].tokens
raw["question_tokens_strings"] = tokenized_q.encodings[0].tokens
baskets.append(SampleBasket(raw=raw, id_internal=internal_id, id_external=external_id, samples=None))
return baskets
def _get_start_of_word_QA(word_ids):
words = np.array(word_ids)
start_of_word_single = [1] + list(np.ediff1d(words))
return start_of_word_single
#TODO standardize with other processors
def _get_start_of_word(word_ids, special_token_mask=None):
words = np.array(word_ids)
if special_token_mask:
start_of_word_single = np.where(special_token_mask, -1, words)
start_of_word_single = np.ediff1d(start_of_word_single)
start_of_word_single = [0] + list(np.clip(start_of_word_single, 0, 1))
else:
# TODO check for validity for all tokenizer and special token types
words[0] = -1
words[-1] = words[-2]
start_of_word_single = [0] + list(np.ediff1d(words))
return start_of_word_single