forked from UMCUGenetics/pymc4c
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutilities.py
462 lines (379 loc) · 17.6 KB
/
utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
import numpy as np
def get_chr_info(genome_str, property='chr_name'):
chr_details = dict({
'hg19': dict({
'chr_name': [
'chr1', 'chr2', 'chr3', 'chr4', 'chr5', 'chr6', 'chr7', 'chr8', 'chr9', 'chr10',
'chr11', 'chr12', 'chr13', 'chr14', 'chr15', 'chr16', 'chr17', 'chr18', 'chr19', 'chr20', 'chr21', 'chr22',
'chrX', 'chrY', 'chrM'
],
'chr_size': [
249250621, 243199373, 198022430, 191154276, 180915260, 171115067, 159138663, 146364022, 141213431, 135534747,
135006516, 133851895, 115169878, 107349540, 102531392, 90354753, 81195210, 78077248, 59128983, 63025520, 48129895, 51304566,
155270560, 59373566, 16571
]
}),
'mm9': dict({
'chr_name': [
'chr1', 'chr2', 'chr3', 'chr4', 'chr5', 'chr6', 'chr7', 'chr8', 'chr9', 'chr10',
'chr11', 'chr12', 'chr13', 'chr14', 'chr15', 'chr16', 'chr17', 'chr18', 'chr19',
'chrX', 'chrY', 'chrM'
],
'chr_size': [
197195432, 181748087, 159599783, 155630120, 152537259, 149517037, 152524553, 131738871, 124076172,
129993255, 121843856, 121257530, 120284312, 125194864, 103494974, 98319150, 95272651, 90772031, 61342430,
166650296, 15902555, 16299
]
}),
'mm10': dict({
'chr_name': [
'chr1', 'chr2', 'chr3', 'chr4', 'chr5', 'chr6', 'chr7', 'chr8', 'chr9', 'chr10',
'chr11', 'chr12', 'chr13', 'chr14', 'chr15', 'chr16', 'chr17', 'chr18', 'chr19',
'chrX', 'chrY', 'chrM'
],
'chr_size': [
195471971, 182113224, 160039680, 156508116, 151834684, 149736546, 145441459, 129401213, 124595110,
130694993, 122082543, 120129022, 120421639, 124902244, 104043685, 98207768, 94987271, 90702639, 61431566,
171031299, 91744698, 16299,
]
})
})
return chr_details[genome_str][property]
def get_re_info(re_name='DpnII', property='seq', genome_str=None):
re_details = dict({
'DpnII': dict({'seq': 'GATC'}),
'MboI': dict({'seq': 'GATC'}),
'Csp6I': dict({'seq': 'GTAC'}),
'NlaIII': dict({'seq': 'CATG'}),
'XbaI': dict({'seq': 'TCTAGA'}),
'BamHI': dict({'seq': 'GGATCC'}),
'SacI': dict({'seq': 'GAGCTC'}),
'PstI': dict({'seq': 'CTGCAG'}),
'HindIII': dict({'seq': 'AAGCTT'})
})
if property == 'pos':
re_fname = './renzs/{:s}_{:s}.npz'.format(genome_str, re_name)
chr_lst = get_chr_info(genome_str=genome_str, property='chr_name')
re_data = np.load(re_fname)['arr_0']
assert np.array_equal(re_data[1], chr_lst)
assert re_data[2] == genome_str
return re_data[0]
else:
return re_details[re_name][property]
def extract_re_positions(genome_str, re_name_lst, output_fname=None, ref_fasta=None):
from os import path, makedirs
import pysam
import re
# Initialization
chr_lst = get_chr_info(genome_str=genome_str, property='chr_name')
chr_map = dict(zip(chr_lst, np.arange(len(chr_lst))))
if output_fname is None:
output_fname = './renzs/{:s}_{:s}.npz'.format(genome_str, '-'.join(re_name_lst))
if path.isfile(output_fname):
print '[w] Restriction enzyme file exists: ' + output_fname
return
if not path.isdir(path.dirname(output_fname)):
makedirs(path.dirname(output_fname))
if ref_fasta is None:
ref_fasta = '../../../datasets/reference_genomes/' + genome_str + '/chrAll.fa'
print 'Searching in the reference genome defined in: ' + ref_fasta
# get re sequences
seq_lst = []
for re_name in re_name_lst:
seq_lst.append(get_re_info(genome_str=genome_str, re_name=re_name, property='seq'))
re_regex = '|'.join(seq_lst)
# Loop over chromosomes
re_pos_lst = [None] * len(chr_lst)
chr_lst_loaded = [None] * len(chr_lst)
with pysam.FastxFile(ref_fasta) as ref_fid:
print 'Scanning chromosomes for restriction recognition sequences: {:s}'.format(', '.join(seq_lst))
for chr_ind, chr in enumerate(ref_fid):
if not chr.name in chr_lst:
print '\t{:s} is ignored,'.format(chr.name)
continue
print '\t{:s},'.format(chr.name)
cut_sites = []
for frg in re.finditer(re_regex, chr.sequence, re.IGNORECASE):
cut_sites.append(frg.start() + 1)
re_pos_lst[chr_map[chr.name]] = np.array(cut_sites, dtype=np.uint32)
chr_lst_loaded[chr_map[chr.name]] = chr.name
if not np.array_equal(chr_lst, chr_lst_loaded):
raise Exception('[e] Inconsistent reference genome!')
print ''
# Save the result
np.savez(output_fname, [re_pos_lst, chr_lst_loaded, genome_str])
def get_fasta_sequence(genome, chromosome, pos_start, pos_end):
import urllib2
from xml.etree import ElementTree
message = 'http://genome.ucsc.edu/cgi-bin/das/{:s}/dna?segment={:s}:{:d},{:d}'.format(
genome, chromosome, pos_start, pos_end)
response_xml = urllib2.urlopen(message)
html = response_xml.read() # I'm going to assume a safe XML here
response_tree = ElementTree.fromstring(html)
return response_tree[0][0].text.replace('\n', '').replace('\r', '')
def seq_complement(seq):
from string import maketrans
trans_tbl = maketrans('TCGAtcga', 'AGCTagct')
return seq.translate(trans_tbl)
def seq_rev_comp(seq):
return seq_complement(seq)[::-1]
def hasOL(que_item, ref_lst, include_ref_left=False, include_ref_right=False, offset=0):
if isinstance(que_item, list):
que_item = np.array(que_item)
if isinstance(ref_lst, list):
ref_lst = np.array(ref_lst)
if ref_lst.ndim == 1:
ref_lst = ref_lst.reshape(1, -1)
que_ncol = que_item.shape[0]
ref_nrow = ref_lst.shape[0]
assert que_item.ndim == 1, 'Query must be only one element'
assert que_ncol == ref_lst.shape[1], 'Inconsistency between number of columns in query and reference.'
result = np.ones(ref_nrow, dtype=bool)
crd_ind = 0
if que_ncol == 4: # Orientation
result = que_item[3] == ref_lst[:, 3]
if que_ncol >= 3: # Chromosome
result = np.logical_and(result, que_item[0] == ref_lst[:, 0])
crd_ind = 1
if include_ref_left:
OvlL = ref_lst[:, crd_ind] <= que_item[crd_ind+1] + offset
else:
OvlL = ref_lst[:, crd_ind] < que_item[crd_ind+1] + offset
if include_ref_right:
OvlR = ref_lst[:, crd_ind+1] >= que_item[crd_ind] - offset
else:
OvlR = ref_lst[:, crd_ind+1] > que_item[crd_ind] - offset
result = np.logical_and(result, np.logical_and(OvlL, OvlR))
return result
def which(program):
import os
def is_exe(fpath):
return os.path.isfile(fpath) and os.access(fpath, os.X_OK)
fpath, fname = os.path.split(program)
if fpath:
if is_exe(program):
return program
else:
for path in os.environ["PATH"].split(os.pathsep):
exe_file = os.path.join(path, program)
if is_exe(exe_file):
return exe_file
return None
def accum_array(group_idx, arr, func=None, default_value=None, min_n_group=None, rebuild_index=False):
"""groups a by indices, and then applies func to each group in turn.
e.g. func example: [func=lambda g: g] or [func=np.sum] or None for speed
based on https://github.com/ml31415/numpy-groupies
"""
if rebuild_index:
group_idx = np.unique(group_idx.copy(), return_inverse=True)[1]
if not min_n_group:
min_n_group = np.max(group_idx) + 1
order_group_idx = np.argsort(group_idx, kind='mergesort')
counts = np.bincount(group_idx, minlength=min_n_group)
if isinstance(arr, np.ndarray):
groups = np.split(arr[order_group_idx], np.cumsum(counts)[:-1], axis=0)
else: # If arr is a Pandas DataFrame
groups = np.split(arr.loc[order_group_idx,:], np.cumsum(counts)[:-1], axis=0)
if func:
ret = [default_value] * min_n_group
for i, grp in enumerate(groups):
if len(grp) > 0:
ret[i] = func(grp)
return ret
else:
return groups
def flatten(nested_lst):
out_lst = []
for item in nested_lst:
if isinstance(item, list):
out_lst.extend(flatten(item))
else:
out_lst.append(item)
return out_lst
################### MC-4C related functions #########################
def load_annotation(genome_str, roi_crd=None):
import pandas as pd
# load annotation
inp_fname = './annotations/ant_{:s}.tsv'.format(genome_str)
ant_pd = pd.read_csv(inp_fname, delimiter='\t', comment='#')
# convert map to chr_nums
chr_lst = get_chr_info(genome_str=genome_str, property='chr_name')
chr_map = dict(zip(chr_lst, range(1, len(chr_lst) + 1)))
ant_pd['ant_cnum'] = ant_pd['ant_chr'].map(chr_map)
# filter annotations outside ROI
if roi_crd is not None:
is_in = (ant_pd['ant_cnum'] == roi_crd[0]) & \
(ant_pd['ant_pos'] >= roi_crd[1]) & \
(ant_pd['ant_pos'] <= roi_crd[2])
ant_pd = ant_pd.loc[is_in]
return ant_pd.reset_index(drop=True)
def load_configs(input_fname, max_n_configs=None):
""" Read configurations from given file, put it into a dict
:param input_fname: takes a path to a tab-separated file (or a "config_id") with one variable name and value
per line, multiple values are seprated by ";").
:returns: Dictionary where keys are based on the first column with values in a list.
"""
from os import path
# check number of given configs
cfg_file_list = input_fname.split(',')
if max_n_configs is not None:
assert len(cfg_file_list) <= max_n_configs, \
'Maximum of {:d} configs are allowed to be loaded.'.format(max_n_configs)
# loop over configs
config_lst = []
for cfg_fname in cfg_file_list:
# check if config_file is a file
if cfg_fname[-4:] != '.cfg':
cfg_fname = './configs/cfg_' + cfg_fname + '.cfg'
assert path.isfile(cfg_fname), 'Configuration file could not be found: '.format(cfg_fname)
# Load global and then given configs
configs = dict()
for fname in ['./mc4c.cfg', cfg_fname]:
if not path.isfile(fname):
continue
with open(fname, 'r') as cfg_fid:
for line in cfg_fid:
if (line[0] == '#') or (len(line) == 1):
continue
columns = line.rstrip('\n').split('\t')
assert len(columns) == 2
fld_lst = columns[1].split(',')
if len(fld_lst) == 1:
configs[columns[0]] = fld_lst[0]
else:
configs[columns[0]] = fld_lst
# conversions
for cfg_name in ['vp_start', 'vp_end', 'roi_start', 'roi_end']:
if cfg_name in configs.keys():
configs[cfg_name] = int(configs[cfg_name])
for cfg_name in ['prm_start', 'prm_end']:
configs[cfg_name] = [int(value) for value in configs[cfg_name]]
for cfg_name in ['bwa_index', 'reference_fasta']:
configs[cfg_name] = configs[cfg_name].replace('%REF%', configs['genome_build'])
# get chromosome info
chr_lst = get_chr_info(genome_str=configs['genome_build'], property='chr_name')
chr_map = dict(zip(chr_lst, range(1, len(chr_lst) + 1)))
configs['vp_cnum'] = chr_map[configs['vp_chr']]
# check configs that should be of equal length
linked_configs = [
['prm_seq','prm_start','prm_end'],
['re_name','re_seq'],
]
for cnf_set in linked_configs:
assert len(set([len(configs[x]) for x in cnf_set])) == 1, \
'Error: different lengths for linked configs:'+','.join(str(x) for x in cnf_set)
# set default if needed
roi_cen = int(np.mean([np.min(configs['prm_start']), np.max(configs['prm_end'])]))
# TODO: Shall we allow the user to choose bin size?
if 'n_bin' not in configs.keys():
configs['n_bin'] = 200
if not np.all([key in configs.keys() for key in ['roi_start', 'roi_end']]):
configs['roi_start'] = roi_cen - 1000000
configs['roi_end'] = roi_cen + 1000000
edge_lst = np.linspace(configs['roi_start'], configs['roi_end'], num=configs['n_bin'] + 1, dtype=np.int64)
configs['bin_width'] = edge_lst[1] - edge_lst[0]
if not np.all([key in configs.keys() for key in ['vp_start', 'vp_end']]):
configs['vp_start'] = roi_cen - int(configs['bin_width'] * 1.5)
configs['vp_end'] = roi_cen + int(configs['bin_width'] * 1.5)
assert (configs['roi_end'] - configs['roi_start'] < 2e6), '[e] ROI can not be defined to be larger than 2mb!'
assert (configs['roi_end'] - configs['roi_start'] > 1.2e5), '[e] ROI can not be defined to be smaller than 120kb!'
assert (configs['n_bin'] >= 100) and (configs['n_bin'] <= 300), \
'[e] #bins={:d}, #bins should be in the interval of 100 <= #bin <= 300'.format(configs['n_bin'])
# add to list of configs
config_lst.append(configs.copy())
return config_lst
def load_mc4c(config_lst, target_field='frg_np', data_path='./datasets/', verbose=True,
min_mq=20, valid_only=True, unique_only=True, reindex_reads=True, max_rows=np.inf):
import pandas as pd
import h5py
MAX_N_CIR = 1000000000000
out_pd = pd.DataFrame()
if not isinstance(config_lst, list):
config_lst = [config_lst]
header_lst = []
for cfg_idx, configs in enumerate(config_lst):
if unique_only:
inp_fname = data_path + '/mc4c_{:s}_uniq.hdf5'.format(configs['run_id'])
else:
inp_fname = data_path + '/mc4c_{:s}_all.hdf5'.format(configs['run_id'])
if verbose:
print('Loading {:s} dataset ...'.format(inp_fname))
h5_fid = h5py.File(inp_fname, 'r')
if np.isinf(max_rows):
data_np = h5_fid[target_field][()]
else:
print 'Selecting only top [{:d}] rows in the dataset'.format(max_rows)
data_np = h5_fid[target_field][:max_rows]
header_lst = list(h5_fid[target_field + '_header_lst'][()])
h5_fid.close()
part_pd = pd.DataFrame(data_np, columns=header_lst)
# Filtering fragments
if min_mq > 0:
part_pd = part_pd.loc[part_pd['MQ'] >= min_mq]
if valid_only:
is_val = np.bitwise_and(part_pd['Flag'], 1) == 0
part_pd = part_pd.loc[is_val, :]
# Adjust Read IDs
assert np.max(part_pd['ReadID']) < MAX_N_CIR
part_pd['ReadID'] = part_pd['ReadID'] + (cfg_idx + 1) * MAX_N_CIR
if verbose and (len(config_lst) > 1):
print '\tGot [{:,d}] reads and [{:,d}] fragments.'.format(
len(np.unique(part_pd['ReadID'])), part_pd.shape[0])
# Append the part
out_pd = out_pd.append(part_pd, ignore_index=True)
out_pd = out_pd[header_lst]
if reindex_reads:
if verbose:
print 'Reindexing reads ...'
header_lst.append('ReadID_original')
out_pd[header_lst[-1]] = out_pd['ReadID'].copy()
out_pd['ReadID'] = np.unique(out_pd['ReadID'], return_inverse=True)[1] + 1
if verbose:
print 'In total, [{:,d}] reads and [{:,d}] fragments are loaded.'.format(
len(np.unique(out_pd['ReadID'])), out_pd.shape[0])
return out_pd[header_lst]
def limit_to_roi(reads, vp_crd=None, roi_crd=None, min_n_frg=2):
# Reads format: ReadID, Chr, StartCrd, EndCrd
n_frg = reads.shape[0]
if n_frg == 0:
return np.empty([0, 4])
is_val = np.ones(n_frg, dtype=np.bool)
if vp_crd is not None:
assert reads.shape[1] - 1 == len(vp_crd)
is_val = is_val & ~ hasOL(vp_crd, reads[:, 1:], offset=0)
if roi_crd is not None:
assert reads.shape[1] - 1 == len(roi_crd)
is_val = is_val & hasOL(roi_crd, reads[:, 1:], offset=0)
reads_roi = reads[is_val, :].copy()
if min_n_frg is not None:
read_size = np.bincount(reads_roi[:, 0], minlength=np.max(reads_roi[:, 0]) + 1)[reads_roi[:, 0]]
reads_roi = reads_roi[read_size >= min_n_frg, :]
return reads_roi
def get_nreads_per_bin(reads, bin_crd=None, n_bin=None, boundary=None, min_n_frg=None):
# Reads format: ReadID, Chr, StartCrd, EndCrd
# Bin format: Chr, StartCrd, EndCrd
assert reads.shape[1] == 4
if boundary is None:
boundary = [bin_crd[0, 0], bin_crd[0, 1], bin_crd[-1, 2]]
if min_n_frg is not None:
assert len(boundary) == 3
reads = limit_to_roi(reads, vp_crd=None, roi_crd=boundary, min_n_frg=min_n_frg)
if n_bin is not None:
edge_lst = np.linspace(boundary[1], boundary[2], num=n_bin + 1, dtype=np.int64).reshape(-1, 1)
bin_crd = np.hstack([np.repeat(boundary[0], n_bin).reshape(-1, 1), edge_lst[:-1], edge_lst[1:] - 1])
else:
n_bin = bin_crd.shape[0]
assert bin_crd.shape[1] == 3
n_read = len(np.unique(reads[:, 0]))
# looping over bins
bin_cvg = np.zeros(n_bin, dtype=np.int)
for bi in range(n_bin):
is_in = hasOL(bin_crd[bi, :], reads[:, 1:4])
bin_cvg[bi] = len(np.unique(reads[is_in, 0]))
return bin_cvg, n_read
def showprogress(iter, n_iter, n_step=10, output_format='{:1.0f}%,'):
iter = iter + 1
if ((iter % (n_iter / float(n_step))) - ((iter - 1) % (n_iter / float(n_step))) < 0) or (n_iter / float(n_step) <= 1):
print(output_format.format(iter * 100 / n_iter)),
if iter == n_iter:
print