@@ -119,13 +119,13 @@ View the models found by auto-sklearn
119
119
120
120
.. code-block :: none
121
121
122
- rank ensemble_weight type cost duration
123
- model_id
124
- 25 1 0.24 sgd 0.436679 0.572841
125
- 6 2 0.26 ard_regression 0.455042 0.587081
126
- 31 3 0.28 ard_regression 0.461909 0.566196
127
- 35 4 0.18 ard_regression 0.468308 0.995362
128
- 7 5 0.04 gradient_boosting 0.518673 1.014187
122
+ rank ensemble_weight type cost duration
123
+ model_id
124
+ 25 1 0.30 sgd 0.436679 0.721507
125
+ 6 2 0.38 ard_regression 0.455042 0.741423
126
+ 31 3 0.26 ard_regression 0.461909 0.695052
127
+ 11 4 0.02 random_forest 0.507400 10.839403
128
+ 7 5 0.04 gradient_boosting 0.518673 1.254648
129
129
130
130
131
131
@@ -151,62 +151,62 @@ Print the final ensemble constructed by auto-sklearn
151
151
.. code-block :: none
152
152
153
153
{ 6: { 'cost': 0.4550418898836528,
154
- 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fe2c8048b80 >,
155
- 'ensemble_weight': 0.26 ,
156
- 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fe2c4c06d60 >,
154
+ 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f40a32ea8e0 >,
155
+ 'ensemble_weight': 0.38 ,
156
+ 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f40a31dd940 >,
157
157
'model_id': 6,
158
158
'rank': 1,
159
- 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fe2c4c06dc0 >,
159
+ 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f40a31dddc0 >,
160
160
'sklearn_regressor': ARDRegression(alpha_1=0.0003701926442639788, alpha_2=2.2118001735899097e-07,
161
161
copy_X=False, lambda_1=1.2037591637980971e-06,
162
162
lambda_2=4.358378124977852e-09,
163
163
threshold_lambda=1136.5286041327277, tol=0.021944240404849075)},
164
164
7: { 'cost': 0.5186726734789994,
165
- 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fe2c7f38070 >,
165
+ 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f40a332ed30 >,
166
166
'ensemble_weight': 0.04,
167
- 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fe2c7c66dc0 >,
167
+ 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f40a15caca0 >,
168
168
'model_id': 7,
169
169
'rank': 2,
170
- 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fe2c7c66bb0 >,
170
+ 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f40a31679a0 >,
171
171
'sklearn_regressor': HistGradientBoostingRegressor(l2_regularization=1.8428972335335263e-10,
172
172
learning_rate=0.012607824914758717, max_iter=512,
173
173
max_leaf_nodes=10, min_samples_leaf=8,
174
174
n_iter_no_change=0, random_state=1,
175
175
validation_fraction=None, warm_start=True)},
176
+ 11: { 'cost': 0.5073997164657239,
177
+ 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f40a32e5160>,
178
+ 'ensemble_weight': 0.02,
179
+ 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f40a31d9970>,
180
+ 'model_id': 11,
181
+ 'rank': 3,
182
+ 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f40a31d9040>,
183
+ 'sklearn_regressor': RandomForestRegressor(bootstrap=False, criterion='mae',
184
+ max_features=0.6277363920171745, min_samples_leaf=6,
185
+ min_samples_split=15, n_estimators=512, n_jobs=1,
186
+ random_state=1, warm_start=True)},
176
187
25: { 'cost': 0.43667876507897496,
177
- 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fe2c7f7c5b0 >,
178
- 'ensemble_weight': 0.24 ,
179
- 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fe2c4c3a5b0 >,
188
+ 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f40a138d880 >,
189
+ 'ensemble_weight': 0.3 ,
190
+ 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f40a31b0940 >,
180
191
'model_id': 25,
181
- 'rank': 3 ,
182
- 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fe2c4c3a9d0 >,
192
+ 'rank': 4 ,
193
+ 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f40a31b0ca0 >,
183
194
'sklearn_regressor': SGDRegressor(alpha=0.0006517033225329654, epsilon=0.012150149892783745,
184
195
eta0=0.016444224834275295, l1_ratio=1.7462342366289323e-09,
185
196
loss='epsilon_insensitive', max_iter=16, penalty='elasticnet',
186
197
power_t=0.21521743568582094, random_state=1,
187
198
tol=0.002431731981071206, warm_start=True)},
188
199
31: { 'cost': 0.4619090472287596,
189
- 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fe2c7cd3ac0 >,
190
- 'ensemble_weight': 0.28 ,
191
- 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fe2c503e850 >,
200
+ 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f40a143deb0 >,
201
+ 'ensemble_weight': 0.26 ,
202
+ 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f409e8da040 >,
192
203
'model_id': 31,
193
- 'rank': 4 ,
194
- 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fe2c503e700 >,
204
+ 'rank': 5 ,
205
+ 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f409e8dab20 >,
195
206
'sklearn_regressor': ARDRegression(alpha_1=0.0003231549748466066, alpha_2=0.0002550914122041718,
196
207
copy_X=False, lambda_1=2.0381967509909317e-05,
197
208
lambda_2=6.669372163715464e-06,
198
- threshold_lambda=4787.837289272208, tol=0.0022718359328007297)},
199
- 35: { 'cost': 0.46830847406823906,
200
- 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fe2c8156be0>,
201
- 'ensemble_weight': 0.18,
202
- 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fe2c7ef6070>,
203
- 'model_id': 35,
204
- 'rank': 5,
205
- 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fe2c7ef61c0>,
206
- 'sklearn_regressor': ARDRegression(alpha_1=0.00028378747975261987, alpha_2=2.480473124043016e-08,
207
- copy_X=False, lambda_1=2.443383072629711e-07,
208
- lambda_2=8.793566274927655e-05,
209
- threshold_lambda=4237.033213139775, tol=0.003058396088909069)}}
209
+ threshold_lambda=4787.837289272208, tol=0.0022718359328007297)}}
210
210
211
211
212
212
@@ -238,8 +238,8 @@ predicting the data mean has an R2 score of 0.
238
238
239
239
.. code-block :: none
240
240
241
- Train R2 score: 0.5910262435863187
242
- Test R2 score: 0.4074697347767652
241
+ Train R2 score: 0.587810789938566
242
+ Test R2 score: 0.39825550070176285
243
243
244
244
245
245
@@ -284,7 +284,7 @@ the true value).
284
284
285
285
.. rst-class :: sphx-glr-timing
286
286
287
- **Total running time of the script: ** ( 1 minutes 54.683 seconds)
287
+ **Total running time of the script: ** ( 1 minutes 59.218 seconds)
288
288
289
289
290
290
.. _sphx_glr_download_examples_20_basic_example_regression.py :
0 commit comments