Skip to content

Commit 9e6b441

Browse files
author
Github Actions
committed
dependabot[bot]: Bump actions/checkout from 2 to 3.1.0 (#1592)
1 parent 4ec5704 commit 9e6b441

File tree

75 files changed

+4186
-4366
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

75 files changed

+4186
-4366
lines changed
Binary file not shown.
Binary file not shown.
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading

development/_sources/examples/20_basic/example_classification.rst.txt

+211-131
Large diffs are not rendered by default.

development/_sources/examples/20_basic/example_multilabel_classification.rst.txt

+5-5
Original file line numberDiff line numberDiff line change
@@ -150,7 +150,7 @@ View the models found by auto-sklearn
150150
151151
rank ensemble_weight type cost duration
152152
model_id
153-
2 1 1.0 random_forest 0.447294 3.112699
153+
2 1 1.0 random_forest 0.447294 3.745824
154154
155155
156156
@@ -176,11 +176,11 @@ Print the final ensemble constructed by auto-sklearn
176176
.. code-block:: none
177177
178178
{ 2: { 'balancing': Balancing(random_state=1),
179-
'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fe2c4e90b50>,
179+
'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7f409f4ee8e0>,
180180
'cost': 0.4472941828699525,
181-
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fe2c54b9fd0>,
181+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f40a301c2b0>,
182182
'ensemble_weight': 1.0,
183-
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fe2c4e90ca0>,
183+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f409f4ee730>,
184184
'model_id': 2,
185185
'rank': 1,
186186
'sklearn_classifier': RandomForestClassifier(max_features=15, n_estimators=512, n_jobs=1,
@@ -253,7 +253,7 @@ Get the Score of the final ensemble
253253
254254
.. rst-class:: sphx-glr-timing
255255

256-
**Total running time of the script:** ( 0 minutes 17.923 seconds)
256+
**Total running time of the script:** ( 0 minutes 15.455 seconds)
257257

258258

259259
.. _sphx_glr_download_examples_20_basic_example_multilabel_classification.py:

development/_sources/examples/20_basic/example_multioutput_regression.rst.txt

+33-9
Original file line numberDiff line numberDiff line change
@@ -122,7 +122,9 @@ View the models found by auto-sklearn
122122
123123
rank ensemble_weight type cost duration
124124
model_id
125-
11 1 1.0 gaussian_process 8.757508e-08 29.665847
125+
4 1 0.66 gaussian_process 9.653633e-08 4.770680
126+
11 2 0.26 gaussian_process 1.096357e-07 18.604435
127+
17 3 0.08 gaussian_process 1.391928e-07 3.342580
126128
127129
128130
@@ -147,14 +149,36 @@ Print the final ensemble constructed by auto-sklearn
147149

148150
.. code-block:: none
149151
150-
{ 11: { 'cost': 8.757507707901624e-08,
151-
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fe2db765f70>,
152-
'ensemble_weight': 1.0,
153-
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fe2db774160>,
152+
{ 4: { 'cost': 9.653632770945109e-08,
153+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f40b6b43730>,
154+
'ensemble_weight': 0.66,
155+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f40a2fe6e50>,
156+
'model_id': 4,
157+
'rank': 1,
158+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f409f34cbb0>,
159+
'sklearn_regressor': GaussianProcessRegressor(alpha=2.6231667524556984e-13,
160+
kernel=RBF(length_scale=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]),
161+
n_restarts_optimizer=10, normalize_y=True,
162+
random_state=1)},
163+
11: { 'cost': 1.0963572538713606e-07,
164+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f40a3868d90>,
165+
'ensemble_weight': 0.26,
166+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f40a16f6340>,
154167
'model_id': 11,
155-
'rank': 1,
156-
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fe2db774820>,
168+
'rank': 2,
169+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f40a16f6610>,
157170
'sklearn_regressor': GaussianProcessRegressor(alpha=4.658781733712728e-13,
171+
kernel=RBF(length_scale=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]),
172+
n_restarts_optimizer=10, normalize_y=True,
173+
random_state=1)},
174+
17: { 'cost': 1.3919280295038305e-07,
175+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f409e5ae370>,
176+
'ensemble_weight': 0.08,
177+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f40a1334cd0>,
178+
'model_id': 17,
179+
'rank': 3,
180+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f40a13344f0>,
181+
'sklearn_regressor': GaussianProcessRegressor(alpha=7.0489976142181925e-12,
158182
kernel=RBF(length_scale=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]),
159183
n_restarts_optimizer=10, normalize_y=True,
160184
random_state=1)}}
@@ -183,7 +207,7 @@ Get the Score of the final ensemble
183207

184208
.. code-block:: none
185209
186-
R2 score: 0.9999998849508759
210+
R2 score: 0.9999999400709513
187211
188212
189213
@@ -398,7 +422,7 @@ Get the configuration space
398422
399423
.. rst-class:: sphx-glr-timing
400424

401-
**Total running time of the script:** ( 1 minutes 53.872 seconds)
425+
**Total running time of the script:** ( 1 minutes 56.191 seconds)
402426

403427

404428
.. _sphx_glr_download_examples_20_basic_example_multioutput_regression.py:

development/_sources/examples/20_basic/example_regression.rst.txt

+39-39
Original file line numberDiff line numberDiff line change
@@ -119,13 +119,13 @@ View the models found by auto-sklearn
119119

120120
.. code-block:: none
121121
122-
rank ensemble_weight type cost duration
123-
model_id
124-
25 1 0.24 sgd 0.436679 0.572841
125-
6 2 0.26 ard_regression 0.455042 0.587081
126-
31 3 0.28 ard_regression 0.461909 0.566196
127-
35 4 0.18 ard_regression 0.468308 0.995362
128-
7 5 0.04 gradient_boosting 0.518673 1.014187
122+
rank ensemble_weight type cost duration
123+
model_id
124+
25 1 0.30 sgd 0.436679 0.721507
125+
6 2 0.38 ard_regression 0.455042 0.741423
126+
31 3 0.26 ard_regression 0.461909 0.695052
127+
11 4 0.02 random_forest 0.507400 10.839403
128+
7 5 0.04 gradient_boosting 0.518673 1.254648
129129
130130
131131
@@ -151,62 +151,62 @@ Print the final ensemble constructed by auto-sklearn
151151
.. code-block:: none
152152
153153
{ 6: { 'cost': 0.4550418898836528,
154-
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fe2c8048b80>,
155-
'ensemble_weight': 0.26,
156-
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fe2c4c06d60>,
154+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f40a32ea8e0>,
155+
'ensemble_weight': 0.38,
156+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f40a31dd940>,
157157
'model_id': 6,
158158
'rank': 1,
159-
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fe2c4c06dc0>,
159+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f40a31dddc0>,
160160
'sklearn_regressor': ARDRegression(alpha_1=0.0003701926442639788, alpha_2=2.2118001735899097e-07,
161161
copy_X=False, lambda_1=1.2037591637980971e-06,
162162
lambda_2=4.358378124977852e-09,
163163
threshold_lambda=1136.5286041327277, tol=0.021944240404849075)},
164164
7: { 'cost': 0.5186726734789994,
165-
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fe2c7f38070>,
165+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f40a332ed30>,
166166
'ensemble_weight': 0.04,
167-
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fe2c7c66dc0>,
167+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f40a15caca0>,
168168
'model_id': 7,
169169
'rank': 2,
170-
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fe2c7c66bb0>,
170+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f40a31679a0>,
171171
'sklearn_regressor': HistGradientBoostingRegressor(l2_regularization=1.8428972335335263e-10,
172172
learning_rate=0.012607824914758717, max_iter=512,
173173
max_leaf_nodes=10, min_samples_leaf=8,
174174
n_iter_no_change=0, random_state=1,
175175
validation_fraction=None, warm_start=True)},
176+
11: { 'cost': 0.5073997164657239,
177+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f40a32e5160>,
178+
'ensemble_weight': 0.02,
179+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f40a31d9970>,
180+
'model_id': 11,
181+
'rank': 3,
182+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f40a31d9040>,
183+
'sklearn_regressor': RandomForestRegressor(bootstrap=False, criterion='mae',
184+
max_features=0.6277363920171745, min_samples_leaf=6,
185+
min_samples_split=15, n_estimators=512, n_jobs=1,
186+
random_state=1, warm_start=True)},
176187
25: { 'cost': 0.43667876507897496,
177-
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fe2c7f7c5b0>,
178-
'ensemble_weight': 0.24,
179-
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fe2c4c3a5b0>,
188+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f40a138d880>,
189+
'ensemble_weight': 0.3,
190+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f40a31b0940>,
180191
'model_id': 25,
181-
'rank': 3,
182-
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fe2c4c3a9d0>,
192+
'rank': 4,
193+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f40a31b0ca0>,
183194
'sklearn_regressor': SGDRegressor(alpha=0.0006517033225329654, epsilon=0.012150149892783745,
184195
eta0=0.016444224834275295, l1_ratio=1.7462342366289323e-09,
185196
loss='epsilon_insensitive', max_iter=16, penalty='elasticnet',
186197
power_t=0.21521743568582094, random_state=1,
187198
tol=0.002431731981071206, warm_start=True)},
188199
31: { 'cost': 0.4619090472287596,
189-
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fe2c7cd3ac0>,
190-
'ensemble_weight': 0.28,
191-
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fe2c503e850>,
200+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f40a143deb0>,
201+
'ensemble_weight': 0.26,
202+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f409e8da040>,
192203
'model_id': 31,
193-
'rank': 4,
194-
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fe2c503e700>,
204+
'rank': 5,
205+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f409e8dab20>,
195206
'sklearn_regressor': ARDRegression(alpha_1=0.0003231549748466066, alpha_2=0.0002550914122041718,
196207
copy_X=False, lambda_1=2.0381967509909317e-05,
197208
lambda_2=6.669372163715464e-06,
198-
threshold_lambda=4787.837289272208, tol=0.0022718359328007297)},
199-
35: { 'cost': 0.46830847406823906,
200-
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fe2c8156be0>,
201-
'ensemble_weight': 0.18,
202-
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fe2c7ef6070>,
203-
'model_id': 35,
204-
'rank': 5,
205-
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fe2c7ef61c0>,
206-
'sklearn_regressor': ARDRegression(alpha_1=0.00028378747975261987, alpha_2=2.480473124043016e-08,
207-
copy_X=False, lambda_1=2.443383072629711e-07,
208-
lambda_2=8.793566274927655e-05,
209-
threshold_lambda=4237.033213139775, tol=0.003058396088909069)}}
209+
threshold_lambda=4787.837289272208, tol=0.0022718359328007297)}}
210210
211211
212212
@@ -238,8 +238,8 @@ predicting the data mean has an R2 score of 0.
238238

239239
.. code-block:: none
240240
241-
Train R2 score: 0.5910262435863187
242-
Test R2 score: 0.4074697347767652
241+
Train R2 score: 0.587810789938566
242+
Test R2 score: 0.39825550070176285
243243
244244
245245
@@ -284,7 +284,7 @@ the true value).
284284

285285
.. rst-class:: sphx-glr-timing
286286

287-
**Total running time of the script:** ( 1 minutes 54.683 seconds)
287+
**Total running time of the script:** ( 1 minutes 59.218 seconds)
288288

289289

290290
.. _sphx_glr_download_examples_20_basic_example_regression.py:

development/_sources/examples/20_basic/sg_execution_times.rst.txt

+5-5
Original file line numberDiff line numberDiff line change
@@ -5,14 +5,14 @@
55

66
Computation times
77
=================
8-
**06:05.454** total execution time for **examples_20_basic** files:
8+
**06:10.281** total execution time for **examples_20_basic** files:
99

1010
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+
11-
| :ref:`sphx_glr_examples_20_basic_example_classification.py` (``example_classification.py``) | 01:58.975 | 0.0 MB |
11+
| :ref:`sphx_glr_examples_20_basic_example_classification.py` (``example_classification.py``) | 01:59.417 | 0.0 MB |
1212
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+
13-
| :ref:`sphx_glr_examples_20_basic_example_regression.py` (``example_regression.py``) | 01:54.683 | 0.0 MB |
13+
| :ref:`sphx_glr_examples_20_basic_example_regression.py` (``example_regression.py``) | 01:59.218 | 0.0 MB |
1414
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+
15-
| :ref:`sphx_glr_examples_20_basic_example_multioutput_regression.py` (``example_multioutput_regression.py``) | 01:53.872 | 0.0 MB |
15+
| :ref:`sphx_glr_examples_20_basic_example_multioutput_regression.py` (``example_multioutput_regression.py``) | 01:56.191 | 0.0 MB |
1616
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+
17-
| :ref:`sphx_glr_examples_20_basic_example_multilabel_classification.py` (``example_multilabel_classification.py``) | 00:17.923 | 0.0 MB |
17+
| :ref:`sphx_glr_examples_20_basic_example_multilabel_classification.py` (``example_multilabel_classification.py``) | 00:15.455 | 0.0 MB |
1818
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+

0 commit comments

Comments
 (0)